Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Zero-Velocity Surface in the General Three-Body-Problem. / Титов, Владимир Борисович.
в: Vestnik St. Petersburg University: Mathematics, Том 56, № 1, 01.03.2023, стр. 125-133.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Zero-Velocity Surface in the General Three-Body-Problem
AU - Титов, Владимир Борисович
PY - 2023/3/1
Y1 - 2023/3/1
N2 - The zero-velocity surfaces of the general planar three-body problem are constructed in form space, i.e., the factor space of the configuration space by transfer and rotation. Such a space is the space of congruent triangles, and the sphere in this space is similar triangles. The integral of energy in form space gives the equation of a zero-velocity surface. These surfaces can also be obtained based on the Sundman inequality. Such surfaces separate areas of possible motion from areas where motion is impossible.
AB - The zero-velocity surfaces of the general planar three-body problem are constructed in form space, i.e., the factor space of the configuration space by transfer and rotation. Such a space is the space of congruent triangles, and the sphere in this space is similar triangles. The integral of energy in form space gives the equation of a zero-velocity surface. These surfaces can also be obtained based on the Sundman inequality. Such surfaces separate areas of possible motion from areas where motion is impossible.
KW - general three-body problem
KW - region of permitted motion
KW - zero-velocity surface
UR - https://www.mendeley.com/catalogue/e9625e58-4153-3521-a1c1-59a9d232fd37/
U2 - 10.1134/S1063454123010144
DO - 10.1134/S1063454123010144
M3 - Article
VL - 56
SP - 125
EP - 133
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 1
ER -
ID: 103267774