Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Zeroes of the Spectral Density of Discrete Schrödinger Operator with Wigner-von Neumann Potential. / Simonov, Sergey.
в: Integral Equations and Operator Theory, Том 73, № 3, 07.2012, стр. 351-364.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Zeroes of the Spectral Density of Discrete Schrödinger Operator with Wigner-von Neumann Potential
AU - Simonov, Sergey
PY - 2012/7
Y1 - 2012/7
N2 - We consider a discrete Schrödinger operator J whose potential is the sum of a Wigner-von Neumann term c sin(2ωn+δ)/n and a summable term. The essential spectrum of the operator J is equal to the interval [-2, 2]. Inside this interval, there are two critical points ±2 where eigenvalues may be situated. We prove that, generically, the spectral density of J has zeroes of the power {pipe}c{pipe}/2{pipe}sin ω{pipe} at these points.
AB - We consider a discrete Schrödinger operator J whose potential is the sum of a Wigner-von Neumann term c sin(2ωn+δ)/n and a summable term. The essential spectrum of the operator J is equal to the interval [-2, 2]. Inside this interval, there are two critical points ±2 where eigenvalues may be situated. We prove that, generically, the spectral density of J has zeroes of the power {pipe}c{pipe}/2{pipe}sin ω{pipe} at these points.
KW - Asymptotics of generalized eigenvectors
KW - discrete Schrödinger operator
KW - Jacobi matrices
KW - orthogonal polynomials
KW - pseudogaps
KW - Wigner-von Neumann potential
UR - http://www.scopus.com/inward/record.url?scp=84864338528&partnerID=8YFLogxK
U2 - 10.1007/s00020-012-1972-x
DO - 10.1007/s00020-012-1972-x
M3 - Article
AN - SCOPUS:84864338528
VL - 73
SP - 351
EP - 364
JO - Integral Equations and Operator Theory
JF - Integral Equations and Operator Theory
SN - 0378-620X
IS - 3
ER -
ID: 9366517