Standard

Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy. / Krasilin, A.A.; Khalisov, M.M.; Kozhevina, A.V.; Kozlov, D.A.; Danilov, D.V.; Loshachenko, A.S.; Enyashin, A.N.; Ankudinov, A.V.

в: Materials Today Communications, Том 38, 108358, 01.03.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Krasilin, AA, Khalisov, MM, Kozhevina, AV, Kozlov, DA, Danilov, DV, Loshachenko, AS, Enyashin, AN & Ankudinov, AV 2024, 'Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy', Materials Today Communications, Том. 38, 108358. https://doi.org/10.1016/j.mtcomm.2024.108358

APA

Krasilin, A. A., Khalisov, M. M., Kozhevina, A. V., Kozlov, D. A., Danilov, D. V., Loshachenko, A. S., Enyashin, A. N., & Ankudinov, A. V. (2024). Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy. Materials Today Communications, 38, [108358]. https://doi.org/10.1016/j.mtcomm.2024.108358

Vancouver

Krasilin AA, Khalisov MM, Kozhevina AV, Kozlov DA, Danilov DV, Loshachenko AS и пр. Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy. Materials Today Communications. 2024 Март 1;38. 108358. https://doi.org/10.1016/j.mtcomm.2024.108358

Author

Krasilin, A.A. ; Khalisov, M.M. ; Kozhevina, A.V. ; Kozlov, D.A. ; Danilov, D.V. ; Loshachenko, A.S. ; Enyashin, A.N. ; Ankudinov, A.V. / Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy. в: Materials Today Communications. 2024 ; Том 38.

BibTeX

@article{37d709c29eaf46faaa2eb6e206d1f011,
title = "Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy",
abstract = "Here, we investigate an influence of Fe3+ content on the mechanical behavior of Mg3Si2O5(OH)4 synthetic phyllosilicate nanoscrolls with chrysotile structure during the bending tests carried out by atomic force microscopy. The developed approach to the microscopy data treatment allowed us to consider fixing conditions, elasticity of the foundation, and shear strain contributions to the observed Young's modulus value. Doping by 6 at% of Fe3+ decreased the Young's modulus from 238 down to 150 GPa. The applied density-functional theory calculations confirmed the same trend for the most energy preferable types of Mg2+ and Si4+ substitutons by Fe3+. Despite major part of the experimental data has been satisfactory explained within the shear strain contribution assumption, doping by Fe3+ gives rise to nanoscrolls with anomalous Young's modulus value (600 ± 200 GPa). Potential reasons of the effect are considered. {\textcopyright} 2024 Elsevier Ltd",
keywords = "Bending test, Density-functional theory, Fixing conditions, Hydrothermal synthesis, Mechanical properties, Phyllosilicate, Atomic force microscopy, Bending tests, Density (specific gravity), Elastic moduli, Hydrogen bonds, Magnesium compounds, Shear strain, Silicon, Silicon compounds, Atomic-force-microscopy, Condition, Density-functional-theory, Fe 3+, Fixing condition, Mechanical behavior, Modulus values, Nanoscrolls, Young modulus, Density functional theory",
author = "A.A. Krasilin and M.M. Khalisov and A.V. Kozhevina and D.A. Kozlov and D.V. Danilov and A.S. Loshachenko and A.N. Enyashin and A.V. Ankudinov",
note = "Export Date: 4 March 2024 Адрес для корреспонденции: Krasilin, A.A.; Ioffe Institute, 26 Politekhnicheskaya st., Russian Federation; эл. почта: ikrasilin@mail.ioffe.ru Сведения о финансировании: Russian Science Foundation, RSF, 19–13-00151 Текст о финансировании 1: The research was partially supported by the Russian Science Foundation grant 19–13-00151, https://rscf.ru/en/project/19–13-00151/ . The investigation of the morphology by means of electron microscopy was carried out at the IRC for Nanotechnology of the Science Park of St. Petersburg State University within the framework of project No. АААА-А19–119091190094. Additional STEM studies were performed using the equipment of the JRC PMR IGIC RAS. Пристатейные ссылки: Krasilin, A.A., Khrapova, E.K., Maslennikova, T.P., Cation doping approach for nanotubular hydrosilicates curvature control and related applications (2020) Crystals, 10, p. 654; Perbost, R., Amouric, M., Olives, J., Influence of cation size on the curvature of serpentine minerals: Hrtem-aem study and elastic theory (2003) Clays Clay Min., 51, pp. 430-438; Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., Roveri, N., Tubular-shaped stoichiometric chrysotile nanocrystals (2004) Chemistry, 10, pp. 3043-3049; Levin, A., Khrapova, E., Kozlov, D., Krasilin, A., Gusarov, V., Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders (2022) J. Appl. Crystallogr, 55, pp. 484-502; Singh, B., Why does halloysite roll? — a new model (1996) Clays Clay Min., 44, pp. 191-196; Zhang, H.L., Lei, X.R., Yan, C.J., Wang, H.Q., Xiao, G.Q., Hao, J.R., Wang, D., Qiu, X.M., Analysis on crystal structure of 7{\AA}-halloysite (2011) Adv. Mat. Res, pp. 415-417; D'Angelo, A., Paineau, E., Rouzi{\`e}re, S., Elkaim, {\'E}., Goldmann, C., Toquer, D., Rols, S., Launois, P., The atomic structure of imogolite nanotubes: a 50 years old issue reinvestigated by X-ray scattering experiments and molecular dynamics simulations (2023) Appl. Clay Sci., 242; Pigni{\'e}, M.-C., Patra, S., Huart, L., Milosavljevi{\'c}, A.R., Renault, J.P., Leroy, J., Nicolas, C., Thill, A., Experimental determination of the curvature-induced intra-wall polarization of inorganic nanotubes (2021) Nanoscale, 13, pp. 19650-19662; Whittaker, E.J.W., The structure of chrysotile. V. Diffuse reflexions and fibre texture (1957) Acta Crystallogr., 10, pp. 149-156; Demichelis, R., De La Pierre, M., Mookherjee, M., Zicovich-Wilson, C.M., Orlando, R., Serpentine polymorphism: a quantitative insight from first-principles calculations (2016) CrystEngComm, 18, pp. 4412-4419; Bloise, A., Catalano, M., Gualtieri, A., Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment (2018) Minerals, 8, p. 135; Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., Gusarov, V.V., The enthalpies of formation of natural and synthetic nanotubular chrysotile (2006) Russ. J. Phys. Chem. A, 80, pp. 1021-1024; Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I.G., Sabatino, P., Geoinspired synthetic chrysotile nanotubes (2006) J. Mater. Res., 21, pp. 2711-2725; Khrapova, E.K., Ugolkov, V.L., Straumal, E.A., Lermontov, S.A., Lebedev, V.A., Kozlov, D.A., Kunkel, T.S., Krasilin, A.A., Thermal behavior of Mg−Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation (2021) ChemNanoMat, 7, pp. 257-269; McDonald, A., Scott, B., Villemure, G., Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate (2009) Microporous Mesoporous Mater., 120, pp. 263-266; Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Batonneau-Gener, I., Comparot, J., Khelifa, A., Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite (2013) Colloids Surf. A Physicochem. Eng. Asp., 421, pp. 26-33; Krasilin, A.A., Danilovich, D.P., Yudina, E.B., Bruyere, S., Ghanbaja, J., Ivanov, V.K., Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls (2019) Appl. Clay Sci., 173, pp. 1-11; Ashok, J., Bian, Z., Wang, Z., Kawi, S., Ni-phyllosilicate structure derived Ni–SiO2 –MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability (2018) Catal. Sci. Technol., 8, pp. 1730-1742; Bian, Z., Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: a review (2020) Catal. Today, 339, pp. 3-23; To, D.-T., Lin, Y.-C., Copper phyllosilicates-derived catalysts in the production of alcohols from hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2: a review (2021) Catalysts, 11, p. 255; Ren, Z., Younis, M.N., Wu, H., Li, C., Yang, X., Wang, G., Design and synthesis of La-modified copper phyllosilicate nanotubes for hydrogenation of methyl acetate to ethanol (2021) Catal. Lett., 151, pp. 3089-3102; Shesterkina, A.A., Vikanova, K.V., Zhuravleva, V.S., Kustov, A.L., Davshan, N.A., Mishin, I.V., Strekalova, A.A., Kustov, L.M., A novel catalyst based on nickel phyllosilicate for the selective hydrogenation of unsaturated compounds (2023) Mol. Catal., 547; Krasilin, A.A., Bodalyov, I.S., Malkov, A.A., Khrapova, E.K., Maslennikova, T.P., Malygin, A.A., On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite (2018) Nanosyst.: Phys., Chem., Math., 9, pp. 410-416; Shi, H., Tian, C., Liu, X., Sun, N., Song, C., Zheng, H., Gao, K., Ding, Y., Ni-phyllosilicate nanotubes coated by CeO2 for ultra-efficiency of 36.9% and near-limit CO2 conversion in solar-driven conversion of CO2-to-fuel (2023) Chem. Eng. J., 454; Borghi, E., Occhiuzzi, M., Foresti, E., Lesci, I.G., Roveri, N., Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements (2010) Phys. Chem. Chem. Phys., 12, pp. 227-238; Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai, B., Wang, X., Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries (2011) Nano Res., 4, pp. 882-890; Krasilin, A.A.A., Semenova, A.S., Kellerman, D.G., Nevedomsky, V.N., Gusarov, V.V., Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes (2016) EPL, 113, p. 47006; Ankudinov, A.V., Belskaya, N.A., Kozlov, D.A., Krasilin, A.A., Kunkel, T.S., Khalisov, M.M., Khrapova, E.K., Mechanical and magnetic properties of Mg-Ni hydrosilicate nanoscrolls as study objects for atomic force microscopy (2023) Ferroelectrics, 604, pp. 1-7; Krasilin, A.A., Panchuk, V.V., Semenov, V.G., Gusarov, V.V., Formation of variable-composition iron(III) hydrosilicates with the сhrysotile structure (2016) Russ. J. Gen. Chem., 86, pp. 2581-2588; Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., Gusarov, V.V., Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate (2007) Russ. J. Inorg. Chem., 52, pp. 338-344; Foresti, E., Hochella, M.F., Kornishi, H., Lesci, I.G., Madden, A.S., Roveri, N., Xu, H., Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes (2005) Adv. Funct. Mater., 15, pp. 1009-1016; Bloise, A., Belluso, E., Barrese, E., Miriello, D., Apollaro, C., Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers (2009) Cryst. Res. Technol., 44, pp. 590-596; White, R.D., Bavykin, D.V., Walsh, F.C., Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO2 (2012) J. Phys. Chem. C., 116, pp. 8824-8833; Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Roveri, N., Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy (2007) Adv. Funct. Mater., 17, pp. 3332-3338; Lecouvet, B., Horion, J., D'Haese, C., Bailly, C., Nysten, B., Elastic modulus of halloysite nanotubes (2013) Nanotechnology, 24; Krasilin, A.A., Khalisov, M.M., Khrapova, E.K., Kunkel, T.S., Kozlov, D.A., Anuchin, N.M., Enyashin, A.N., Ankudinov, A.V., Surface tension and shear strain contributions to the mechanical behavior of individual Mg-Ni-phyllosilicate nanoscrolls (2021) Part. Part. Syst. Charact., 38; Heidari Pebdani, M., Molecular insight into structural and mechanical properties of Halloysite structure (2023) Comput. Mater. Sci., 218; Krieg, M., Fl{\"a}schner, G., Alsteens, D., Gaub, B.M., Roos, W.H., Wuite, G.J.L., Gaub, H.E., M{\"u}ller, D.J., Atomic force microscopy-based mechanobiology (2018) Nat. Rev. Phys., 1, pp. 41-57; Garcia, R., Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications (2020) Chem. Soc. Rev., 49, pp. 5850-5884; Kis, A., (2003), Mechanical properties of mesoscopic objects, Docteur es sciences, Ecole Polytechnique Federale de Lausanne; Krivtsov, A.M., Morozov, N.F., On mechanical characteristics of nanocrystals (2002) Phys. Solid State, 44, pp. 2260-2265; Morozov, N.F., Tovstik, P.E., Tovstik, T.P., Flexural rigidity of multilayer plates (2020) Mech. Solids, 55, pp. 607-611; Krivtsov, A.M., Morozov, N.F., On mechanical characteristics of nanocrystals (2002) Phys. Solid State, 44, pp. 2260-2265; Vlassov, S., Bocharov, D., Polyakov, B., Vahtrus, M., {\v S}utka, A., Oras, S., Zadin, V., Kyritsakis, A., Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires (2023) Nanotechnol. Rev., 12; Ankudinov, A.V., A new algorithm for measuring the young's modulus of suspended nanoobjects by the bending-based test method of atomic force microscopy (2019) Semiconductors, 53, pp. 1891-1899; Ankudinov, A., Dunaevskiy, M., Khalisov, M., Khrapova, E., Krasilin, A., Atomic force microscopy bending tests of a suspended rod-shaped object: accounting for object fixing conditions (2023) Phys. Rev. E, 107; Ankudinov, A.V., On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope (2019) Nanosyst.: Phys., Chem., Math., 10, pp. 642-653; Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes (2002) Mater. Sci. Eng.: A, 334, pp. 173-178; Xiao, S., Hou, W., (2006), https://doi.org/10.1080/15363830500538425, Studies of size effects on carbon nanotubes{\textquoteright} mechanical properties by using different potential functions, fullerenes, nanotubes and carbon nanostructures. 14 9–16; Shen, Z., Li, W., Ma, J., Zhang, X., Zhang, X., Zhang, X., Dong, P., Zhang, X., Theoretical predictions of size-dependent Young's and shear moduli of single-walled carbon nanotubes (2021) Phys. B Condens Matter, 613; Liu, X., Li, K., Duan, X., Huang, Y., Li, S., Liu, Y., Xu, F., Ding, Y., Mechanical properties of individual core-shell-structured SnO2@C nanofibers investigated by atomic force microscopy and finite element method (2018) Sci. China Technol. Sci., 61, pp. 1144-1149; Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Tenne, R., On the mechanical behavior of WS2 nanotubes under axial tension and compression (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 523-528; Ding, Y., Zhang, C., Liao, W., Peng, J., Mechanical and electrochemical properties of TiO2 modified polyurethane nanofibers (2023) Appl. Phys. A, 129, p. 162; Cuenot, S., Fr{\'e}tigny, C., Demoustier-Champagne, S., Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy (2004) Phys. Rev. B, 69; Shannon, R.D., Prewitt, C.T., Effective ionic radii in oxides and fluorides (1969) Acta Crystallogr. B, 25, pp. 925-946; Merkys, A., Vaitkus, A., Grybauskas, A., Konovalovas, A., Quir{\'o}s, M., Gra{\v z}ulis, S., Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions (2023) J. Chemin., 15, p. 25; Vaitkus, A., Merkys, A., Gra{\v z}ulis, S., Validation of the crystallography open database using the crystallographic information framework (2021) J. Appl. Crystallogr, 54, pp. 661-672; Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276; Sader, J.E., Chon, J.W.M., Mulvaney, P., Calibration of rectangular atomic force microscope cantilevers (1999) Rev. Sci. Instrum., 70, pp. 3967-3969; Kis, A., Kasas, S., Babi{\'c}, B., Kulik, A.J., Beno{\^i}t, W., Briggs, G.A.D., Sch{\"o}nenberger, C., Forr{\'o}, L., Nanomechanics of microtubules (2002) Phys. Rev. Lett., 89; Gere, J.M., Timoshenko, S.P., Mechanics of Materials (1990), Pws Pub Co Boston; Ordej{\'o}n, P., Artacho, E., Soler, J.M., Self-consistent order- N density-functional calculations for very large systems (1996) Phys. Rev. B, 53, pp. R10441-R10444; Garc{\'i}a, A., Papior, N., Akhtar, A., Artacho, E., Blum, V., Bosoni, E., Brandimarte, P., Junquera, J., Siesta: recent developments and applications (2020) J. Chem. Phys., 152; Csonka, G.I., Perdew, J.P., Ruzsinszky, A., Philipsen, P.H.T., Leb{\`e}gue, S., Paier, J., Vydrov, O.A., {\'A}ngy{\'a}n, J.G., Assessing the performance of recent density functionals for bulk solids (2009) Phys. Rev. B, 79; Mellini, M., The crystal structure of lizardite 1T: hydrogen bonds and polytypism (1982) Am. Miner., 67, pp. 597-598; Devouard, B., Baronnet, A., van Tendeloo, G., Amelinckx, S., First evidence of synthetic polygonal serpentines (1997) Eur. J. Mineral., 9, pp. 539-546; Tarling, M.S., Rooney, J.S., Viti, C., Smith, S.A.F., Gordon, K.C., Distinguishing the Raman spectrum of polygonal serpentine (2018) J. Raman Spectrosc., 49, pp. 1978-1984; Cressey, G., Cressey, B.A., Wicks, F.J., Yada, K., A disc with fivefold symmetry: the proposed fundamental seed structure for the formation of chrysotile asbestos fibres, polygonal serpentine fibres and polyhedral lizardite spheres (2010) Miner. Mag., 74, pp. 29-37; Landau, L.D., Pitaevskii, L.P., Kosevich, A.M., Lifshitz, E.M., Theory of Elasticity (1986), third ed. Butterworth-Heinemann Oxford (Course of Theoretical Physics); Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body (1981), Mir Publishers Moscow; Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Fernandes, J.V., Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects (2016) Compos. B Eng., 89, pp. 155-168; Yuan, J., Liew, K.M., Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes (2009) Carbon, 47, pp. 1526-1533; Rafiee, R., Pourazizi, R., Evaluating the influence of defects on the young's modulus of carbon nanotubes using stochastic modeling (2014) Mater. Res., 17, pp. 758-766; Krasilin, A., Khalisov, M., Khrapova, E., Ugolkov, V., Enyashin, A., Ankudinov, A., Thermal treatment impact on the mechanical properties of Mg3Si2O5(OH)4 nanoscrolls (2022) Materials, 15, p. 9023; Kis, A., Cs{\'a}nyi, G., Salvetat, J.-P., Lee, T.-N., Couteau, E., Kulik, A.J., Benoit, W., Forr{\'o}, L., Reinforcement of single-walled carbon nanotube bundles by intertube bridging (2004) Nat. Mater., 3, pp. 153-157; Sammalkorpi, M., Krasheninnikov, A.V., Kuronen, A., Nordlund, K., Kaski, K., Irradiation-induced stiffening of carbon nanotube bundles (2005) Nucl. Instrum. Methods Phys. Res. B, 228, pp. 142-145; Filleter, T., Espinosa, H.D., Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking (2013) Carbon, 56, pp. 1-11; Bloise, A., Belluso, E., Fornero, E., Rinaudo, C., Barrese, E., Capella, S., Influence of synthesis conditions on growth of Ni-doped chrysotile (2010) Microporous Mesoporous Mater., 132, pp. 239-245; Krasilin, A.A., Suprun, A.M., Nevedomsky, V.N., Gusarov, V.V., Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls (2015) Dokl. Phys. Chem., 460, pp. 42-44; Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., Gusarov, V.V., Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions (2005) Glass Phys. Chem., 31, pp. 797-802; Khrapova, E.K., Kozlov, D.A., Krasilin, A.A., Hydrothermal synthesis of hydrosilicate nanoscrolls (Mg1–xCox)3Si2O5(OH)4 in a Na2SO3 solution (2022) Russ. J. Inorg. Chem., 67, pp. 839-849; Korytkova, E.N., Pivovarova, L.N., Drosdova, I.A., Gusarov, V.V., Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure (2007) Russ. J. Gen. Chem., 77, pp. 1669-1676; Bloise, A., Barrese, E., Apollaro, C., Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers (2009) Neues Jahrb. F{\"u}r Mineral. - Abh., 185, pp. 297-304; Maslennikova, T.P., Gatina, E.N., Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies (2018) Russ. J. Appl. Chem., 91, pp. 286-291",
year = "2024",
month = mar,
day = "1",
doi = "10.1016/j.mtcomm.2024.108358",
language = "Английский",
volume = "38",
journal = "Materials Today Communications",
issn = "2352-4928",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Young's and shear moduli of Fe3+-doped chrysotile nanoscrolls probed by atomic force microscopy

AU - Krasilin, A.A.

AU - Khalisov, M.M.

AU - Kozhevina, A.V.

AU - Kozlov, D.A.

AU - Danilov, D.V.

AU - Loshachenko, A.S.

AU - Enyashin, A.N.

AU - Ankudinov, A.V.

N1 - Export Date: 4 March 2024 Адрес для корреспонденции: Krasilin, A.A.; Ioffe Institute, 26 Politekhnicheskaya st., Russian Federation; эл. почта: ikrasilin@mail.ioffe.ru Сведения о финансировании: Russian Science Foundation, RSF, 19–13-00151 Текст о финансировании 1: The research was partially supported by the Russian Science Foundation grant 19–13-00151, https://rscf.ru/en/project/19–13-00151/ . The investigation of the morphology by means of electron microscopy was carried out at the IRC for Nanotechnology of the Science Park of St. Petersburg State University within the framework of project No. АААА-А19–119091190094. Additional STEM studies were performed using the equipment of the JRC PMR IGIC RAS. Пристатейные ссылки: Krasilin, A.A., Khrapova, E.K., Maslennikova, T.P., Cation doping approach for nanotubular hydrosilicates curvature control and related applications (2020) Crystals, 10, p. 654; Perbost, R., Amouric, M., Olives, J., Influence of cation size on the curvature of serpentine minerals: Hrtem-aem study and elastic theory (2003) Clays Clay Min., 51, pp. 430-438; Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., Roveri, N., Tubular-shaped stoichiometric chrysotile nanocrystals (2004) Chemistry, 10, pp. 3043-3049; Levin, A., Khrapova, E., Kozlov, D., Krasilin, A., Gusarov, V., Structure refinement, microstrains and crystallite sizes of Mg-Ni-phyllosilicate nanoscroll powders (2022) J. Appl. Crystallogr, 55, pp. 484-502; Singh, B., Why does halloysite roll? — a new model (1996) Clays Clay Min., 44, pp. 191-196; Zhang, H.L., Lei, X.R., Yan, C.J., Wang, H.Q., Xiao, G.Q., Hao, J.R., Wang, D., Qiu, X.M., Analysis on crystal structure of 7Å-halloysite (2011) Adv. Mat. Res, pp. 415-417; D'Angelo, A., Paineau, E., Rouzière, S., Elkaim, É., Goldmann, C., Toquer, D., Rols, S., Launois, P., The atomic structure of imogolite nanotubes: a 50 years old issue reinvestigated by X-ray scattering experiments and molecular dynamics simulations (2023) Appl. Clay Sci., 242; Pignié, M.-C., Patra, S., Huart, L., Milosavljević, A.R., Renault, J.P., Leroy, J., Nicolas, C., Thill, A., Experimental determination of the curvature-induced intra-wall polarization of inorganic nanotubes (2021) Nanoscale, 13, pp. 19650-19662; Whittaker, E.J.W., The structure of chrysotile. V. Diffuse reflexions and fibre texture (1957) Acta Crystallogr., 10, pp. 149-156; Demichelis, R., De La Pierre, M., Mookherjee, M., Zicovich-Wilson, C.M., Orlando, R., Serpentine polymorphism: a quantitative insight from first-principles calculations (2016) CrystEngComm, 18, pp. 4412-4419; Bloise, A., Catalano, M., Gualtieri, A., Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment (2018) Minerals, 8, p. 135; Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., Gusarov, V.V., The enthalpies of formation of natural and synthetic nanotubular chrysotile (2006) Russ. J. Phys. Chem. A, 80, pp. 1021-1024; Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I.G., Sabatino, P., Geoinspired synthetic chrysotile nanotubes (2006) J. Mater. Res., 21, pp. 2711-2725; Khrapova, E.K., Ugolkov, V.L., Straumal, E.A., Lermontov, S.A., Lebedev, V.A., Kozlov, D.A., Kunkel, T.S., Krasilin, A.A., Thermal behavior of Mg−Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation (2021) ChemNanoMat, 7, pp. 257-269; McDonald, A., Scott, B., Villemure, G., Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate (2009) Microporous Mesoporous Mater., 120, pp. 263-266; Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Batonneau-Gener, I., Comparot, J., Khelifa, A., Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite (2013) Colloids Surf. A Physicochem. Eng. Asp., 421, pp. 26-33; Krasilin, A.A., Danilovich, D.P., Yudina, E.B., Bruyere, S., Ghanbaja, J., Ivanov, V.K., Crystal violet adsorption by oppositely twisted heat-treated halloysite and pecoraite nanoscrolls (2019) Appl. Clay Sci., 173, pp. 1-11; Ashok, J., Bian, Z., Wang, Z., Kawi, S., Ni-phyllosilicate structure derived Ni–SiO2 –MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability (2018) Catal. Sci. Technol., 8, pp. 1730-1742; Bian, Z., Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: a review (2020) Catal. Today, 339, pp. 3-23; To, D.-T., Lin, Y.-C., Copper phyllosilicates-derived catalysts in the production of alcohols from hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2: a review (2021) Catalysts, 11, p. 255; Ren, Z., Younis, M.N., Wu, H., Li, C., Yang, X., Wang, G., Design and synthesis of La-modified copper phyllosilicate nanotubes for hydrogenation of methyl acetate to ethanol (2021) Catal. Lett., 151, pp. 3089-3102; Shesterkina, A.A., Vikanova, K.V., Zhuravleva, V.S., Kustov, A.L., Davshan, N.A., Mishin, I.V., Strekalova, A.A., Kustov, L.M., A novel catalyst based on nickel phyllosilicate for the selective hydrogenation of unsaturated compounds (2023) Mol. Catal., 547; Krasilin, A.A., Bodalyov, I.S., Malkov, A.A., Khrapova, E.K., Maslennikova, T.P., Malygin, A.A., On an adsorption/photocatalytic performance of nanotubular Mg3Si2O5(OH)4/TiO2 composite (2018) Nanosyst.: Phys., Chem., Math., 9, pp. 410-416; Shi, H., Tian, C., Liu, X., Sun, N., Song, C., Zheng, H., Gao, K., Ding, Y., Ni-phyllosilicate nanotubes coated by CeO2 for ultra-efficiency of 36.9% and near-limit CO2 conversion in solar-driven conversion of CO2-to-fuel (2023) Chem. Eng. J., 454; Borghi, E., Occhiuzzi, M., Foresti, E., Lesci, I.G., Roveri, N., Spectroscopic characterization of Fe-doped synthetic chrysotile by EPR, DRS and magnetic susceptibility measurements (2010) Phys. Chem. Chem. Phys., 12, pp. 227-238; Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai, B., Wang, X., Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries (2011) Nano Res., 4, pp. 882-890; Krasilin, A.A.A., Semenova, A.S., Kellerman, D.G., Nevedomsky, V.N., Gusarov, V.V., Magnetic properties of synthetic Ni3Si2O5(OH)4 nanotubes (2016) EPL, 113, p. 47006; Ankudinov, A.V., Belskaya, N.A., Kozlov, D.A., Krasilin, A.A., Kunkel, T.S., Khalisov, M.M., Khrapova, E.K., Mechanical and magnetic properties of Mg-Ni hydrosilicate nanoscrolls as study objects for atomic force microscopy (2023) Ferroelectrics, 604, pp. 1-7; Krasilin, A.A., Panchuk, V.V., Semenov, V.G., Gusarov, V.V., Formation of variable-composition iron(III) hydrosilicates with the сhrysotile structure (2016) Russ. J. Gen. Chem., 86, pp. 2581-2588; Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., Gusarov, V.V., Hydrothermal synthesis of nanotubular Mg-Fe hydrosilicate (2007) Russ. J. Inorg. Chem., 52, pp. 338-344; Foresti, E., Hochella, M.F., Kornishi, H., Lesci, I.G., Madden, A.S., Roveri, N., Xu, H., Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes (2005) Adv. Funct. Mater., 15, pp. 1009-1016; Bloise, A., Belluso, E., Barrese, E., Miriello, D., Apollaro, C., Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibers (2009) Cryst. Res. Technol., 44, pp. 590-596; White, R.D., Bavykin, D.V., Walsh, F.C., Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO2 (2012) J. Phys. Chem. C., 116, pp. 8824-8833; Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Roveri, N., Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy (2007) Adv. Funct. Mater., 17, pp. 3332-3338; Lecouvet, B., Horion, J., D'Haese, C., Bailly, C., Nysten, B., Elastic modulus of halloysite nanotubes (2013) Nanotechnology, 24; Krasilin, A.A., Khalisov, M.M., Khrapova, E.K., Kunkel, T.S., Kozlov, D.A., Anuchin, N.M., Enyashin, A.N., Ankudinov, A.V., Surface tension and shear strain contributions to the mechanical behavior of individual Mg-Ni-phyllosilicate nanoscrolls (2021) Part. Part. Syst. Charact., 38; Heidari Pebdani, M., Molecular insight into structural and mechanical properties of Halloysite structure (2023) Comput. Mater. Sci., 218; Krieg, M., Fläschner, G., Alsteens, D., Gaub, B.M., Roos, W.H., Wuite, G.J.L., Gaub, H.E., Müller, D.J., Atomic force microscopy-based mechanobiology (2018) Nat. Rev. Phys., 1, pp. 41-57; Garcia, R., Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications (2020) Chem. Soc. Rev., 49, pp. 5850-5884; Kis, A., (2003), Mechanical properties of mesoscopic objects, Docteur es sciences, Ecole Polytechnique Federale de Lausanne; Krivtsov, A.M., Morozov, N.F., On mechanical characteristics of nanocrystals (2002) Phys. Solid State, 44, pp. 2260-2265; Morozov, N.F., Tovstik, P.E., Tovstik, T.P., Flexural rigidity of multilayer plates (2020) Mech. Solids, 55, pp. 607-611; Krivtsov, A.M., Morozov, N.F., On mechanical characteristics of nanocrystals (2002) Phys. Solid State, 44, pp. 2260-2265; Vlassov, S., Bocharov, D., Polyakov, B., Vahtrus, M., Šutka, A., Oras, S., Zadin, V., Kyritsakis, A., Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires (2023) Nanotechnol. Rev., 12; Ankudinov, A.V., A new algorithm for measuring the young's modulus of suspended nanoobjects by the bending-based test method of atomic force microscopy (2019) Semiconductors, 53, pp. 1891-1899; Ankudinov, A., Dunaevskiy, M., Khalisov, M., Khrapova, E., Krasilin, A., Atomic force microscopy bending tests of a suspended rod-shaped object: accounting for object fixing conditions (2023) Phys. Rev. E, 107; Ankudinov, A.V., On the accuracy of the probe-sample contact stiffness measured by an atomic force microscope (2019) Nanosyst.: Phys., Chem., Math., 10, pp. 642-653; Demczyk, B.G., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O., Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes (2002) Mater. Sci. Eng.: A, 334, pp. 173-178; Xiao, S., Hou, W., (2006), https://doi.org/10.1080/15363830500538425, Studies of size effects on carbon nanotubes’ mechanical properties by using different potential functions, fullerenes, nanotubes and carbon nanostructures. 14 9–16; Shen, Z., Li, W., Ma, J., Zhang, X., Zhang, X., Zhang, X., Dong, P., Zhang, X., Theoretical predictions of size-dependent Young's and shear moduli of single-walled carbon nanotubes (2021) Phys. B Condens Matter, 613; Liu, X., Li, K., Duan, X., Huang, Y., Li, S., Liu, Y., Xu, F., Ding, Y., Mechanical properties of individual core-shell-structured SnO2@C nanofibers investigated by atomic force microscopy and finite element method (2018) Sci. China Technol. Sci., 61, pp. 1144-1149; Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Tenne, R., On the mechanical behavior of WS2 nanotubes under axial tension and compression (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 523-528; Ding, Y., Zhang, C., Liao, W., Peng, J., Mechanical and electrochemical properties of TiO2 modified polyurethane nanofibers (2023) Appl. Phys. A, 129, p. 162; Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy (2004) Phys. Rev. B, 69; Shannon, R.D., Prewitt, C.T., Effective ionic radii in oxides and fluorides (1969) Acta Crystallogr. B, 25, pp. 925-946; Merkys, A., Vaitkus, A., Grybauskas, A., Konovalovas, A., Quirós, M., Gražulis, S., Graph isomorphism-based algorithm for cross-checking chemical and crystallographic descriptions (2023) J. Chemin., 15, p. 25; Vaitkus, A., Merkys, A., Gražulis, S., Validation of the crystallography open database using the crystallographic information framework (2021) J. Appl. Crystallogr, 54, pp. 661-672; Momma, K., Izumi, F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data (2011) J. Appl. Crystallogr., 44, pp. 1272-1276; Sader, J.E., Chon, J.W.M., Mulvaney, P., Calibration of rectangular atomic force microscope cantilevers (1999) Rev. Sci. Instrum., 70, pp. 3967-3969; Kis, A., Kasas, S., Babić, B., Kulik, A.J., Benoît, W., Briggs, G.A.D., Schönenberger, C., Forró, L., Nanomechanics of microtubules (2002) Phys. Rev. Lett., 89; Gere, J.M., Timoshenko, S.P., Mechanics of Materials (1990), Pws Pub Co Boston; Ordejón, P., Artacho, E., Soler, J.M., Self-consistent order- N density-functional calculations for very large systems (1996) Phys. Rev. B, 53, pp. R10441-R10444; García, A., Papior, N., Akhtar, A., Artacho, E., Blum, V., Bosoni, E., Brandimarte, P., Junquera, J., Siesta: recent developments and applications (2020) J. Chem. Phys., 152; Csonka, G.I., Perdew, J.P., Ruzsinszky, A., Philipsen, P.H.T., Lebègue, S., Paier, J., Vydrov, O.A., Ángyán, J.G., Assessing the performance of recent density functionals for bulk solids (2009) Phys. Rev. B, 79; Mellini, M., The crystal structure of lizardite 1T: hydrogen bonds and polytypism (1982) Am. Miner., 67, pp. 597-598; Devouard, B., Baronnet, A., van Tendeloo, G., Amelinckx, S., First evidence of synthetic polygonal serpentines (1997) Eur. J. Mineral., 9, pp. 539-546; Tarling, M.S., Rooney, J.S., Viti, C., Smith, S.A.F., Gordon, K.C., Distinguishing the Raman spectrum of polygonal serpentine (2018) J. Raman Spectrosc., 49, pp. 1978-1984; Cressey, G., Cressey, B.A., Wicks, F.J., Yada, K., A disc with fivefold symmetry: the proposed fundamental seed structure for the formation of chrysotile asbestos fibres, polygonal serpentine fibres and polyhedral lizardite spheres (2010) Miner. Mag., 74, pp. 29-37; Landau, L.D., Pitaevskii, L.P., Kosevich, A.M., Lifshitz, E.M., Theory of Elasticity (1986), third ed. Butterworth-Heinemann Oxford (Course of Theoretical Physics); Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body (1981), Mir Publishers Moscow; Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Fernandes, J.V., Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects (2016) Compos. B Eng., 89, pp. 155-168; Yuan, J., Liew, K.M., Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes (2009) Carbon, 47, pp. 1526-1533; Rafiee, R., Pourazizi, R., Evaluating the influence of defects on the young's modulus of carbon nanotubes using stochastic modeling (2014) Mater. Res., 17, pp. 758-766; Krasilin, A., Khalisov, M., Khrapova, E., Ugolkov, V., Enyashin, A., Ankudinov, A., Thermal treatment impact on the mechanical properties of Mg3Si2O5(OH)4 nanoscrolls (2022) Materials, 15, p. 9023; Kis, A., Csányi, G., Salvetat, J.-P., Lee, T.-N., Couteau, E., Kulik, A.J., Benoit, W., Forró, L., Reinforcement of single-walled carbon nanotube bundles by intertube bridging (2004) Nat. Mater., 3, pp. 153-157; Sammalkorpi, M., Krasheninnikov, A.V., Kuronen, A., Nordlund, K., Kaski, K., Irradiation-induced stiffening of carbon nanotube bundles (2005) Nucl. Instrum. Methods Phys. Res. B, 228, pp. 142-145; Filleter, T., Espinosa, H.D., Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking (2013) Carbon, 56, pp. 1-11; Bloise, A., Belluso, E., Fornero, E., Rinaudo, C., Barrese, E., Capella, S., Influence of synthesis conditions on growth of Ni-doped chrysotile (2010) Microporous Mesoporous Mater., 132, pp. 239-245; Krasilin, A.A., Suprun, A.M., Nevedomsky, V.N., Gusarov, V.V., Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls (2015) Dokl. Phys. Chem., 460, pp. 42-44; Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., Gusarov, V.V., Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions (2005) Glass Phys. Chem., 31, pp. 797-802; Khrapova, E.K., Kozlov, D.A., Krasilin, A.A., Hydrothermal synthesis of hydrosilicate nanoscrolls (Mg1–xCox)3Si2O5(OH)4 in a Na2SO3 solution (2022) Russ. J. Inorg. Chem., 67, pp. 839-849; Korytkova, E.N., Pivovarova, L.N., Drosdova, I.A., Gusarov, V.V., Hydrothermal synthesis of nanotubular Co-Mg hydrosilicates with the chrysotile structure (2007) Russ. J. Gen. Chem., 77, pp. 1669-1676; Bloise, A., Barrese, E., Apollaro, C., Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers (2009) Neues Jahrb. Für Mineral. - Abh., 185, pp. 297-304; Maslennikova, T.P., Gatina, E.N., Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies (2018) Russ. J. Appl. Chem., 91, pp. 286-291

PY - 2024/3/1

Y1 - 2024/3/1

N2 - Here, we investigate an influence of Fe3+ content on the mechanical behavior of Mg3Si2O5(OH)4 synthetic phyllosilicate nanoscrolls with chrysotile structure during the bending tests carried out by atomic force microscopy. The developed approach to the microscopy data treatment allowed us to consider fixing conditions, elasticity of the foundation, and shear strain contributions to the observed Young's modulus value. Doping by 6 at% of Fe3+ decreased the Young's modulus from 238 down to 150 GPa. The applied density-functional theory calculations confirmed the same trend for the most energy preferable types of Mg2+ and Si4+ substitutons by Fe3+. Despite major part of the experimental data has been satisfactory explained within the shear strain contribution assumption, doping by Fe3+ gives rise to nanoscrolls with anomalous Young's modulus value (600 ± 200 GPa). Potential reasons of the effect are considered. © 2024 Elsevier Ltd

AB - Here, we investigate an influence of Fe3+ content on the mechanical behavior of Mg3Si2O5(OH)4 synthetic phyllosilicate nanoscrolls with chrysotile structure during the bending tests carried out by atomic force microscopy. The developed approach to the microscopy data treatment allowed us to consider fixing conditions, elasticity of the foundation, and shear strain contributions to the observed Young's modulus value. Doping by 6 at% of Fe3+ decreased the Young's modulus from 238 down to 150 GPa. The applied density-functional theory calculations confirmed the same trend for the most energy preferable types of Mg2+ and Si4+ substitutons by Fe3+. Despite major part of the experimental data has been satisfactory explained within the shear strain contribution assumption, doping by Fe3+ gives rise to nanoscrolls with anomalous Young's modulus value (600 ± 200 GPa). Potential reasons of the effect are considered. © 2024 Elsevier Ltd

KW - Bending test

KW - Density-functional theory

KW - Fixing conditions

KW - Hydrothermal synthesis

KW - Mechanical properties

KW - Phyllosilicate

KW - Atomic force microscopy

KW - Bending tests

KW - Density (specific gravity)

KW - Elastic moduli

KW - Hydrogen bonds

KW - Magnesium compounds

KW - Shear strain

KW - Silicon

KW - Silicon compounds

KW - Atomic-force-microscopy

KW - Condition

KW - Density-functional-theory

KW - Fe 3+

KW - Fixing condition

KW - Mechanical behavior

KW - Modulus values

KW - Nanoscrolls

KW - Young modulus

KW - Density functional theory

UR - https://www.mendeley.com/catalogue/12ff2efa-71cb-34c8-841c-d1e797372c00/

U2 - 10.1016/j.mtcomm.2024.108358

DO - 10.1016/j.mtcomm.2024.108358

M3 - статья

VL - 38

JO - Materials Today Communications

JF - Materials Today Communications

SN - 2352-4928

M1 - 108358

ER -

ID: 117318963