Standard

Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. / Boom, Michiel P. ; Lameris, Thomas K. ; Schreven, Kees H. T. ; Buitendijk, Nelleke H.; Moonen, Sander ; de Vries, Peter P. ; Зайнагутдинова, Эльмира Мидхатовна; Nolet, Bart A. ; van der Jeugd, Henk P. ; Eichhorn, Götz .

в: Oecologia, Том 202, № 2, 06.2023, стр. 287–298.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Boom, MP, Lameris, TK, Schreven, KHT, Buitendijk, NH, Moonen, S, de Vries, PP, Зайнагутдинова, ЭМ, Nolet, BA, van der Jeugd, HP & Eichhorn, G 2023, 'Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese.', Oecologia, Том. 202, № 2, стр. 287–298. https://doi.org/10.1007/s00442-023-05386-x

APA

Boom, M. P., Lameris, T. K., Schreven, K. H. T., Buitendijk, N. H., Moonen, S., de Vries, P. P., Зайнагутдинова, Э. М., Nolet, B. A., van der Jeugd, H. P., & Eichhorn, G. (2023). Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. Oecologia, 202(2), 287–298. https://doi.org/10.1007/s00442-023-05386-x

Vancouver

Boom MP, Lameris TK, Schreven KHT, Buitendijk NH, Moonen S, de Vries PP и пр. Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. Oecologia. 2023 Июнь;202(2):287–298. https://doi.org/10.1007/s00442-023-05386-x

Author

Boom, Michiel P. ; Lameris, Thomas K. ; Schreven, Kees H. T. ; Buitendijk, Nelleke H. ; Moonen, Sander ; de Vries, Peter P. ; Зайнагутдинова, Эльмира Мидхатовна ; Nolet, Bart A. ; van der Jeugd, Henk P. ; Eichhorn, Götz . / Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese. в: Oecologia. 2023 ; Том 202, № 2. стр. 287–298.

BibTeX

@article{7361021b07cb42779395fef7273d0591,
title = "Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese.",
abstract = "Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.",
keywords = "Animal Migration, Animals, Geese, Seasons, Thoracica, Foraging, Migration, Residency, Day length, Annual cycle",
author = "Boom, {Michiel P.} and Lameris, {Thomas K.} and Schreven, {Kees H. T.} and Buitendijk, {Nelleke H.} and Sander Moonen and {de Vries}, {Peter P.} and Зайнагутдинова, {Эльмира Мидхатовна} and Nolet, {Bart A.} and {van der Jeugd}, {Henk P.} and G{\"o}tz Eichhorn",
year = "2023",
month = jun,
doi = "10.1007/s00442-023-05386-x",
language = "English",
volume = "202",
pages = "287–298",
journal = "Oecologia",
issn = "0029-8549",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese.

AU - Boom, Michiel P.

AU - Lameris, Thomas K.

AU - Schreven, Kees H. T.

AU - Buitendijk, Nelleke H.

AU - Moonen, Sander

AU - de Vries, Peter P.

AU - Зайнагутдинова, Эльмира Мидхатовна

AU - Nolet, Bart A.

AU - van der Jeugd, Henk P.

AU - Eichhorn, Götz

PY - 2023/6

Y1 - 2023/6

N2 - Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.

AB - Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.

KW - Animal Migration

KW - Animals

KW - Geese

KW - Seasons

KW - Thoracica

KW - Foraging

KW - Migration

KW - Residency

KW - Day length

KW - Annual cycle

UR - https://link.springer.com/article/10.1007/s00442-023-05386-x

UR - https://www.mendeley.com/catalogue/e91f42da-997d-335c-a060-36c1c1681708/

U2 - 10.1007/s00442-023-05386-x

DO - 10.1007/s00442-023-05386-x

M3 - Article

C2 - 37270441

VL - 202

SP - 287

EP - 298

JO - Oecologia

JF - Oecologia

SN - 0029-8549

IS - 2

ER -

ID: 114961270