DOI

The results of evaluating explanations of the black-box model for prediction are presented. The XAI evaluation is realized through the different principles and characteristics between black-box model explanations and XAI labels. In the field of high-dimensional prediction, the black-box model represented by neural network and ensemble models can predict complex data sets more accurately than traditional linear regression and white-box models such as the decision tree model. However, an unexplainable characteristic not only hinders developers from debugging but also causes users mistrust. In the XAI field dedicated to 'opening' the black box model, effective evaluation methods are still being developed. Within the established XAI evaluation framework (MDMC) in this paper, explanation methods for the prediction can be effectively tested, and the identified explanation method with relatively higher quality can improve the accuracy, transparency, and reliability of prediction.

Язык оригиналаанглийский
Название основной публикацииProceedings of 2021 2nd International Conference on Neural Networks and Neurotechnologies, NeuroNT 2021
РедакторыS. Shaposhnikov
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы13-16
Число страниц4
ISBN (электронное издание)9781665445344
DOI
СостояниеОпубликовано - 16 июн 2021
Событие2nd International Conference on Neural Networks and Neurotechnologies, NeuroNT 2021 - Saint Petersburg, Российская Федерация
Продолжительность: 16 июн 2021 → …

Серия публикаций

НазваниеProceedings of 2021 2nd International Conference on Neural Networks and Neurotechnologies, NeuroNT 2021

конференция

конференция2nd International Conference on Neural Networks and Neurotechnologies, NeuroNT 2021
Страна/TерриторияРоссийская Федерация
ГородSaint Petersburg
Период16/06/21 → …

    Предметные области Scopus

  • Прикладные компьютерные науки
  • Искусственный интеллект
  • Компьютерные сети и коммуникации

ID: 86497588