DOI

Wind simulation in the context of ships motions is used to estimate the effect of the wind on large containerships, sailboats and yachts. Wind models are typically based on a sum of harmonics with random phases and different amplitudes. In this paper we propose to use autoregressive model to simulate the wind. This model is based on autocovariance function that can be estimated from the real-world data collected by anemometers. We have found none of the data that meets our resolution requirements, and decided to produce the dataset ourselves using three-axis anemometer. We built our own anemometer based on load cells, collected the data with the required resolution, verified the data using well-established statistical distributions, estimated autocovariance functions from the data and simulated the wind using autoregressive model. We have found that the load cell anemometer is capable of recording wind speed for statistical studies, but autoregressive model needs further calibration to reproduce the wind with the same statistical properties.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2021 - 21st International Conference, Proceedings
РедакторыOsvaldo Gervasi, Beniamino Murgante, Sanjay Misra, Chiara Garau, Ivan Blečić, David Taniar, Bernady O. Apduhan, Ana Maria A. C. Rocha, Eufemia Tarantino, Carmelo Maria Torre
Место публикацииCham
ИздательSpringer Nature
Страницы471-485
Число страниц15
ISBN (печатное издание)9783030870096
DOI
СостояниеОпубликовано - 2021
Событие21st International Conference on Computational Science and Its Applications, ICCSA 2021 - Virtual, Online, Италия
Продолжительность: 13 сен 202116 сен 2021

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12956 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция21st International Conference on Computational Science and Its Applications, ICCSA 2021
Сокращенное названиеICCSA 2021
Страна/TерриторияИталия
ГородVirtual, Online
Период13/09/2116/09/21

    Предметные области Scopus

  • Прикладные компьютерные науки
  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 85910272