DOI

In this paper, a new algorithm for distributed multi-target tracking in a sensor network is proposed. The main feature of that algorithm, combining the SPSA techniques and iterative averaging ("consensus algorithm"), is the ability to solve distributed optimization problems in presence of signals with fully uncertain distribution; the only assumption is the signal's boundedness. As an example, we consider the multi-target tracking problem, in which the unknown signals include measurement errors and unpredictable target's maneuvers; statistical properties of these signals are unknown. A special choice of weights in the algorithm enables its application to targets exhibiting different behaviors. An explicit estimate of the residual's covariance matrix is obtained, which may be considered as a performance index of the algorithm. Theoretical results are illustrated by numerical simulations.

Язык оригиналаанглийский
Название основной публикации2021 European Control Conference, ECC 2021
ИздательInstitute of Electrical and Electronics Engineers Inc.
Страницы1074-1079
Число страниц6
ISBN (электронное издание)9789463842365
DOI
СостояниеОпубликовано - 2021
Событие2021 European Control Conference, ECC 2021 - Delft, Нидерланды
Продолжительность: 29 июн 20212 июл 2021

Серия публикаций

Название2021 European Control Conference, ECC 2021

конференция

конференция2021 European Control Conference, ECC 2021
Страна/TерриторияНидерланды
ГородDelft
Период29/06/212/07/21

    Предметные области Scopus

  • Теория оптимизации
  • Искусственный интеллект
  • Теория принятия решений (разное)
  • Системотехника
  • Общее машиностроение
  • Вычислительная математика

ID: 93133734