Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Weighted sobolev-type embedding theorems for functions with symmetries. / Иванов, Сергей Владимирович; Nazarov, A. I.
в: St. Petersburg Mathematical Journal, Том 18, № 1, 01.01.2007, стр. 77-88.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Weighted sobolev-type embedding theorems for functions with symmetries
AU - Иванов, Сергей Владимирович
AU - Nazarov, A. I.
PY - 2007/1/1
Y1 - 2007/1/1
N2 - It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold M and a compact group of isometries G. They showed that the limit Sobolev exponent increases if there are no points in M with discrete orbits under the action of G. In the paper, the situation where M contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for (Formula Presented) increases in the case of embeddings into weighted spaces Lq(M, w) instead of the usual Lq spaces, where the weight function w(x) is a positive power of the distance from x to the set of points with discrete orbits. Also, embeddings of (Formula Presented) into weighted Hölder and Orlicz spaces are treated.
AB - It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold M and a compact group of isometries G. They showed that the limit Sobolev exponent increases if there are no points in M with discrete orbits under the action of G. In the paper, the situation where M contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for (Formula Presented) increases in the case of embeddings into weighted spaces Lq(M, w) instead of the usual Lq spaces, where the weight function w(x) is a positive power of the distance from x to the set of points with discrete orbits. Also, embeddings of (Formula Presented) into weighted Hölder and Orlicz spaces are treated.
KW - Embedding theorems
KW - Sobolev spaces
KW - Symmetries
UR - http://www.scopus.com/inward/record.url?scp=85009775692&partnerID=8YFLogxK
U2 - 10.1090/S1061-0022-06-00943-5
DO - 10.1090/S1061-0022-06-00943-5
M3 - Article
AN - SCOPUS:85009775692
VL - 18
SP - 77
EP - 88
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 1
ER -
ID: 45872671