DOI

Let V(z) be a complex-valued function on the complex plane ℂ satisfying the condition {pipe}V(z) - V(ζ){pipe} ≤ w{pipe}z - ζ{pipe}, z, ζ ε ℂ; ω ≥ 0 be a Muckenhoupt A p weight on ℂ; i. e., the inequality, holds for any disk B, {pipe}B{pipe} = σ(B), and σ be the Lebesque measure on ℂ. We define the operator T* n as follows: The main result of this work consists in deriving the estimate, where b(p, n) grows as a power of n.

Язык оригиналаанглийский
Страницы (с-по)163-168
Число страниц6
ЖурналVestnik St. Petersburg University: Mathematics
Том43
Номер выпуска3
DOI
СостояниеОпубликовано - 1 сен 2010

    Предметные области Scopus

  • Математика (все)

ID: 48397750