DOI

A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces and diffusion of magnetic field. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are presented that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.

Язык оригиналаанглийский
Название основной публикации2015 International Conference on Mechanics - Seventh Polyakhov's Reading
ИздательInstitute of Electrical and Electronics Engineers Inc.
ISBN (электронное издание)9781479968244
DOI
СостояниеОпубликовано - 13 мая 2015
СобытиеVII Поляховские чтения: международная конференция по механике, посвященная 110-летию со дня рождения профессора К.И.Страховича - Saint Petersburg, Российская Федерация
Продолжительность: 2 фев 20156 фев 2015
Номер конференции: 7
http://pol2015.math.spbu.ru/en/
http://pol2015.math.spbu.ru/en/about/
http://pol2015.math.spbu.ru/

конференция

конференцияVII Поляховские чтения
Страна/TерриторияРоссийская Федерация
ГородSaint Petersburg
Период2/02/156/02/15
Сайт в сети Internet

    Предметные области Scopus

  • Общее машиностроение
  • Сопротивление материалов

ID: 9430344