Standard

Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles. / Михайлов, Евгений Федорович; Власенко, Сергей Сергеевич; Киселев, Алексей.

в: Atmospheric Chemistry and Physics, Том 24, № 5, 07.03.2024, стр. 2971–2984.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{9e23ee56133749e8a494887d77628be9,
title = "Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles",
abstract = "Water activity (aw) and interfacial energy or surface tension (σ) are key thermodynamic parameters to describe the hygroscopic growth of atmospheric aerosol particles and their ability to serve as cloud condensation nuclei (CCN), thus influencing the hydrological cycle and climate. Due to size effects and complex mixing states, however, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds in aqueous solution.In this study, we determined aw and σ by differential K{\"o}hler analysis (DKA) of hygroscopic growth measurement data for aerosol particles smaller than 100 nm composed of aqueous ammonium sulfate (AS), D-glucose (Gl), and their mixtures. High-precision measurements of hygroscopic growth were performed at relative humidities (denoted RH) ranging from 2.0 % to 99.6 % with a high-humidity tandem differential mobility analyzer (HHTDMA) in three complementary modes of operation: hydration, dehydration, and restructuring. The restructuring mode (hydration followed by dehydration) enabled the transformation of initially irregular particles into compact globules and the determination of mass equivalent diameters. The HHTDMA-derived growth factors complemented by DKA allows for determination of water activity and surface tension from dilute to highly supersaturated aqueous solutions that are not accessible with other methods. Thus, for mixed AS / Gl nanoparticles with mass ratios of 4:1 and 1:1, the upper limit of solute mass fraction (Xs) was 0.92 and 0.98, respectively.For pure AS and Gl, the DKA-derived aw is in good agreement with electrodynamic balance and bulk measurement data. For AS particles, our aw data also agree well with the Extended Aerosol Inorganics Model (E-AIM III) over the entire concentration range. In contrast, the UNIFAC model as a part of AIOMFAC (Zuend et al., 2011) was found to overestimate aw in aqueous Gl particles, which can be attributed to unaccounted intermolecular interactions.For mixed AS and Gl nanoparticles, we observed a non-monotonic concentration dependence of the surface tension that does not follow the predictions by modeling approaches constructed for mixed inorganic/organic systems. Thus, AS / Gl particles with a 1:1 mass ratio exhibited a strong decrease of σ with increasing solute mass fraction, a minimum value of 56.5 mN m−1 at Xs≈0.5, and a reverse trend of increasing σ at higher concentrations. We suggest that D-glucose molecules surrounded by ammonium sulfate ions tend to associate, forming non-polar aggregates, which lowers the surface tension at the air–droplet interface.We analyzed the uncertainty in the DKA-derived water activity and surface tension, related to the instrumental errors as well as to the morphology of the nanoparticles and their phase state. Our studies have shown that under optimal modes of operation of HHTDMA for moderate aqueous concentrations, the uncertainty in aw and σ does not exceed 0.2 %–0.4 % and 3 %–4 %, respectively, but it increases by an order of magnitude in the case of highly concentrated nanodroplet solutions.",
keywords = "hygroscopic growth, water activity, surface tension, of water droplets, Aerosol",
author = "Михайлов, {Евгений Федорович} and Власенко, {Сергей Сергеевич} and Алексей Киселев",
note = "Mikhailov, E. F., Vlasenko, S. S., and Kiselev, A. A.: Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles, Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024, 2024.",
year = "2024",
month = mar,
day = "7",
doi = "10.5194/egusphere-2023-1815",
language = "English",
volume = "24",
pages = "2971–2984",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "Copernicus GmbH ",
number = "5",

}

RIS

TY - JOUR

T1 - Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles

AU - Михайлов, Евгений Федорович

AU - Власенко, Сергей Сергеевич

AU - Киселев, Алексей

N1 - Mikhailov, E. F., Vlasenko, S. S., and Kiselev, A. A.: Water activity and surface tension of aqueous ammonium sulfate and D-glucose aerosol nanoparticles, Atmos. Chem. Phys., 24, 2971–2984, https://doi.org/10.5194/acp-24-2971-2024, 2024.

PY - 2024/3/7

Y1 - 2024/3/7

N2 - Water activity (aw) and interfacial energy or surface tension (σ) are key thermodynamic parameters to describe the hygroscopic growth of atmospheric aerosol particles and their ability to serve as cloud condensation nuclei (CCN), thus influencing the hydrological cycle and climate. Due to size effects and complex mixing states, however, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds in aqueous solution.In this study, we determined aw and σ by differential Köhler analysis (DKA) of hygroscopic growth measurement data for aerosol particles smaller than 100 nm composed of aqueous ammonium sulfate (AS), D-glucose (Gl), and their mixtures. High-precision measurements of hygroscopic growth were performed at relative humidities (denoted RH) ranging from 2.0 % to 99.6 % with a high-humidity tandem differential mobility analyzer (HHTDMA) in three complementary modes of operation: hydration, dehydration, and restructuring. The restructuring mode (hydration followed by dehydration) enabled the transformation of initially irregular particles into compact globules and the determination of mass equivalent diameters. The HHTDMA-derived growth factors complemented by DKA allows for determination of water activity and surface tension from dilute to highly supersaturated aqueous solutions that are not accessible with other methods. Thus, for mixed AS / Gl nanoparticles with mass ratios of 4:1 and 1:1, the upper limit of solute mass fraction (Xs) was 0.92 and 0.98, respectively.For pure AS and Gl, the DKA-derived aw is in good agreement with electrodynamic balance and bulk measurement data. For AS particles, our aw data also agree well with the Extended Aerosol Inorganics Model (E-AIM III) over the entire concentration range. In contrast, the UNIFAC model as a part of AIOMFAC (Zuend et al., 2011) was found to overestimate aw in aqueous Gl particles, which can be attributed to unaccounted intermolecular interactions.For mixed AS and Gl nanoparticles, we observed a non-monotonic concentration dependence of the surface tension that does not follow the predictions by modeling approaches constructed for mixed inorganic/organic systems. Thus, AS / Gl particles with a 1:1 mass ratio exhibited a strong decrease of σ with increasing solute mass fraction, a minimum value of 56.5 mN m−1 at Xs≈0.5, and a reverse trend of increasing σ at higher concentrations. We suggest that D-glucose molecules surrounded by ammonium sulfate ions tend to associate, forming non-polar aggregates, which lowers the surface tension at the air–droplet interface.We analyzed the uncertainty in the DKA-derived water activity and surface tension, related to the instrumental errors as well as to the morphology of the nanoparticles and their phase state. Our studies have shown that under optimal modes of operation of HHTDMA for moderate aqueous concentrations, the uncertainty in aw and σ does not exceed 0.2 %–0.4 % and 3 %–4 %, respectively, but it increases by an order of magnitude in the case of highly concentrated nanodroplet solutions.

AB - Water activity (aw) and interfacial energy or surface tension (σ) are key thermodynamic parameters to describe the hygroscopic growth of atmospheric aerosol particles and their ability to serve as cloud condensation nuclei (CCN), thus influencing the hydrological cycle and climate. Due to size effects and complex mixing states, however, these parameters are not well constrained for nanoparticles composed of organic and inorganic compounds in aqueous solution.In this study, we determined aw and σ by differential Köhler analysis (DKA) of hygroscopic growth measurement data for aerosol particles smaller than 100 nm composed of aqueous ammonium sulfate (AS), D-glucose (Gl), and their mixtures. High-precision measurements of hygroscopic growth were performed at relative humidities (denoted RH) ranging from 2.0 % to 99.6 % with a high-humidity tandem differential mobility analyzer (HHTDMA) in three complementary modes of operation: hydration, dehydration, and restructuring. The restructuring mode (hydration followed by dehydration) enabled the transformation of initially irregular particles into compact globules and the determination of mass equivalent diameters. The HHTDMA-derived growth factors complemented by DKA allows for determination of water activity and surface tension from dilute to highly supersaturated aqueous solutions that are not accessible with other methods. Thus, for mixed AS / Gl nanoparticles with mass ratios of 4:1 and 1:1, the upper limit of solute mass fraction (Xs) was 0.92 and 0.98, respectively.For pure AS and Gl, the DKA-derived aw is in good agreement with electrodynamic balance and bulk measurement data. For AS particles, our aw data also agree well with the Extended Aerosol Inorganics Model (E-AIM III) over the entire concentration range. In contrast, the UNIFAC model as a part of AIOMFAC (Zuend et al., 2011) was found to overestimate aw in aqueous Gl particles, which can be attributed to unaccounted intermolecular interactions.For mixed AS and Gl nanoparticles, we observed a non-monotonic concentration dependence of the surface tension that does not follow the predictions by modeling approaches constructed for mixed inorganic/organic systems. Thus, AS / Gl particles with a 1:1 mass ratio exhibited a strong decrease of σ with increasing solute mass fraction, a minimum value of 56.5 mN m−1 at Xs≈0.5, and a reverse trend of increasing σ at higher concentrations. We suggest that D-glucose molecules surrounded by ammonium sulfate ions tend to associate, forming non-polar aggregates, which lowers the surface tension at the air–droplet interface.We analyzed the uncertainty in the DKA-derived water activity and surface tension, related to the instrumental errors as well as to the morphology of the nanoparticles and their phase state. Our studies have shown that under optimal modes of operation of HHTDMA for moderate aqueous concentrations, the uncertainty in aw and σ does not exceed 0.2 %–0.4 % and 3 %–4 %, respectively, but it increases by an order of magnitude in the case of highly concentrated nanodroplet solutions.

KW - hygroscopic growth

KW - water activity

KW - surface tension, of water droplets

KW - Aerosol

U2 - 10.5194/egusphere-2023-1815

DO - 10.5194/egusphere-2023-1815

M3 - Article

VL - 24

SP - 2971

EP - 2984

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 5

ER -

ID: 115090401