Ссылки

DOI

We consider decision problems of rating alternatives based on their pairwise comparisons according to two criteria. Given pairwise comparison matrices for each criterion, the problem is to find the overall scores of the alternatives. We offer a solution that involves the minimax approximation of the comparison matrices by a common consistent matrix of unit rank in terms of the Chebyshev metric in logarithmic scale. The approximation problem reduces to a bi-objective optimization problem to minimize the approximation errors simultaneously for both comparison matrices. We formulate the problem in terms of tropical (idempotent) mathematics, which focuses on the theory and applications of algebraic systems with idempotent addition. To solve the optimization problem obtained, we apply methods and results of tropical optimization to derive a complete Pareto-optimal solution in a direct explicit form ready for further analysis and straightforward computation. We then exploit this result to solve the bi-criteria decision problem of interest. As illustrations, we present examples of the solution of two-dimensional optimization problems in general form, and of a decision problem with four alternatives in numerical form.
Язык оригиналаанглийский
Страницы (с-по)79-104
Число страниц26
ЖурналComputational Management Science
Том17
Номер выпуска1
Дата раннего онлайн-доступа26 ноя 2018
DOI
СостояниеОпубликовано - 1 янв 2020
СобытиеXV International Conference on Computational Management Science - Norwegian University of Science and Technology (NTNU), Trondheim, Норвегия
Продолжительность: 29 мая 201831 мая 2018
https://www.ntnu.edu/cms2018

    Предметные области Scopus

  • Теория оптимизации
  • Теория принятия решений (разное)
  • Алгебра и теория чисел
  • Теория управления и исследование операций

ID: 36062477