Документы

DOI

A linear vector equation in two unknown vectors is examined in the framework of tropical algebra dealing with the theory and applications of semirings and semifields with idempotent addition. We consider a two-sided equation where each side is a tropical product of a given matrix by one of the unknown vectors. We use a matrix sparsification technique to reduce the equation to a set of vector inequalities that involve row-monomial matrices obtained from the given matrices. An existence condition of solutions for the inequalities is established, and a direct representation of the solutions is derived in a compact vector form. To illustrate the proposed approach and to compare the obtained result with that of an existing solution procedure, we apply our solution technique to handle two-sided equations known in the literature. Finally, a computational scheme based on the approach to derive all solutions of the two-sided equation is discussed.
Язык оригиналаанглийский
Название основной публикацииRelational and Algebraic Methods in Computer Science
Подзаголовок основной публикации21st International Conference, RAMiCS 2024, Prague, Czech Republic, August 19-22, 2024, Proceedings
РедакторыUli Fahrenberg, Wesley Fussner, Roland Glück
Место публикацииCham
ИздательSpringer Nature
Страницы193-206
Число страниц14
ISBN (электронное издание)978-3-031-68279-7
ISBN (печатное издание)978-3-031-68278-0
DOI
СостояниеОпубликовано - 30 июл 2024
СобытиеRelational and Algebraic Methods in Computer Science - Charles University, Prague, Чехия
Продолжительность: 19 авг 202422 авг 2024
Номер конференции: 21
https://ramics-conf.github.io/2024/

Серия публикаций

НазваниеLecture Notes in Computer Science
ИздательSpringer
Том14787
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференцияRelational and Algebraic Methods in Computer Science
Сокращенное названиеRAMiCS 2024
Страна/TерриторияЧехия
ГородPrague
Период19/08/2422/08/24
Сайт в сети Internet

    Предметные области Scopus

  • Вычислительная математика
  • Алгебра и теория чисел

ID: 124151391