Standard

Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases. / Kriukova, Anna; Mitrofanova, Olga; Sukharev, Kirill; Roschina, Natalia.

Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers. ред. / Daniel A. Alexandrov; Yury Kabanov; Olessia Koltsova; Alexander V. Boukhanovsky; Andrei V. Chugunov. Springer Nature, 2018. стр. 350-360 (Communications in Computer and Information Science; Том 859).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференцииРецензирование

Harvard

Kriukova, A, Mitrofanova, O, Sukharev, K & Roschina, N 2018, Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases. в DA Alexandrov, Y Kabanov, O Koltsova, AV Boukhanovsky & AV Chugunov (ред.), Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers. Communications in Computer and Information Science, Том. 859, Springer Nature, стр. 350-360, 3rd International Conference on Digital Transformation and Global Society, DTGS 2018, St. Petersburg, Российская Федерация, 30/05/18. https://doi.org/10.1007/978-3-030-02846-6_28

APA

Kriukova, A., Mitrofanova, O., Sukharev, K., & Roschina, N. (2018). Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases. в D. A. Alexandrov, Y. Kabanov, O. Koltsova, A. V. Boukhanovsky, & A. V. Chugunov (Ред.), Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers (стр. 350-360). (Communications in Computer and Information Science; Том 859). Springer Nature. https://doi.org/10.1007/978-3-030-02846-6_28

Vancouver

Kriukova A, Mitrofanova O, Sukharev K, Roschina N. Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases. в Alexandrov DA, Kabanov Y, Koltsova O, Boukhanovsky AV, Chugunov AV, Редакторы, Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers. Springer Nature. 2018. стр. 350-360. (Communications in Computer and Information Science). https://doi.org/10.1007/978-3-030-02846-6_28

Author

Kriukova, Anna ; Mitrofanova, Olga ; Sukharev, Kirill ; Roschina, Natalia. / Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases. Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers. Редактор / Daniel A. Alexandrov ; Yury Kabanov ; Olessia Koltsova ; Alexander V. Boukhanovsky ; Andrei V. Chugunov. Springer Nature, 2018. стр. 350-360 (Communications in Computer and Information Science).

BibTeX

@inproceedings{101a5823457d43159792ce7ea2f8f514,
title = "Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases",
abstract = "In this study we compare two semantic relatedness algorithms, namely, Explicit Semantic Analysis (ESA) and Word2Vec. ESA represents text meaning in a high-dimensional space of concepts derived from Wikipedia. Word2Vec generates distributed vector representations from large text corpora). Experiments were carried out on the Russian paraphrase corpus of news titles and Russian ParaPlag paraphrase corpus. The paper contains thorough analysis of results and evaluation procedure.",
keywords = "Explicit semantic analysis, Russian, Text relatedness, Word2vec",
author = "Anna Kriukova and Olga Mitrofanova and Kirill Sukharev and Natalia Roschina",
note = "Funding Information: The research discussed in the paper is supported by the RFBR grant № 16-06-00529 «Development of a linguistic toolkit for semantic analysis of Russian text corpora by statistical techniques». Publisher Copyright: {\textcopyright} Springer Nature Switzerland AG 2018. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.; 3rd International Conference on Digital Transformation and Global Society, DTGS 2018 ; Conference date: 30-05-2018 Through 02-06-2018",
year = "2018",
doi = "10.1007/978-3-030-02846-6_28",
language = "English",
isbn = "9783030028459",
series = "Communications in Computer and Information Science",
publisher = "Springer Nature",
pages = "350--360",
editor = "Alexandrov, {Daniel A.} and Yury Kabanov and Olessia Koltsova and Boukhanovsky, {Alexander V.} and Chugunov, {Andrei V.}",
booktitle = "Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers",
address = "Germany",
url = "http://dtgs.ifmo.ru/",

}

RIS

TY - GEN

T1 - Using explicit semantic analysis and word2Vec in measuring semantic relatedness of russian paraphrases

AU - Kriukova, Anna

AU - Mitrofanova, Olga

AU - Sukharev, Kirill

AU - Roschina, Natalia

N1 - Funding Information: The research discussed in the paper is supported by the RFBR grant № 16-06-00529 «Development of a linguistic toolkit for semantic analysis of Russian text corpora by statistical techniques». Publisher Copyright: © Springer Nature Switzerland AG 2018. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.

PY - 2018

Y1 - 2018

N2 - In this study we compare two semantic relatedness algorithms, namely, Explicit Semantic Analysis (ESA) and Word2Vec. ESA represents text meaning in a high-dimensional space of concepts derived from Wikipedia. Word2Vec generates distributed vector representations from large text corpora). Experiments were carried out on the Russian paraphrase corpus of news titles and Russian ParaPlag paraphrase corpus. The paper contains thorough analysis of results and evaluation procedure.

AB - In this study we compare two semantic relatedness algorithms, namely, Explicit Semantic Analysis (ESA) and Word2Vec. ESA represents text meaning in a high-dimensional space of concepts derived from Wikipedia. Word2Vec generates distributed vector representations from large text corpora). Experiments were carried out on the Russian paraphrase corpus of news titles and Russian ParaPlag paraphrase corpus. The paper contains thorough analysis of results and evaluation procedure.

KW - Explicit semantic analysis

KW - Russian

KW - Text relatedness

KW - Word2vec

UR - http://www.scopus.com/inward/record.url?scp=85054857013&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-02846-6_28

DO - 10.1007/978-3-030-02846-6_28

M3 - Conference contribution

AN - SCOPUS:85054857013

SN - 9783030028459

T3 - Communications in Computer and Information Science

SP - 350

EP - 360

BT - Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers

A2 - Alexandrov, Daniel A.

A2 - Kabanov, Yury

A2 - Koltsova, Olessia

A2 - Boukhanovsky, Alexander V.

A2 - Chugunov, Andrei V.

PB - Springer Nature

T2 - 3rd International Conference on Digital Transformation and Global Society, DTGS 2018

Y2 - 30 May 2018 through 2 June 2018

ER -

ID: 37682445