DOI

The authors propose a boosted k-nearest neighbour algorithm for numerical forecasting of dangerous convective phenomena. The algorithm is applied for processing the output data of the numerical cloud model. The results show that boosted algorithm is able to predict the very fact of convective phenomena occurrence with the high accuracy, but it is not so good in distinguishing the specific type of convective phenomena. Comparison with the k-NN algorithm without boosting shows that boosting resulted in better accuracy of forecasting.

Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications- ICCSA 2019 - 19th International Conference, Proceedings
Подзаголовок основной публикации19th International Conference Saint Petersburg, Russia, July 1–4, 2019 Proceedings, Part IV
РедакторыSanjay Misra, Osvaldo Gervasi, Beniamino Murgante, Elena Stankova, Vladimir Korkhov, Carmelo Torre, Eufemia Tarantino, Ana Maria A.C. Rocha, David Taniar, Bernady O. Apduhan
ИздательSpringer Nature
Страницы802–811
Число страниц10
Том11622
ISBN (электронное издание)1611-3349
ISBN (печатное издание)9783030243043
DOI
СостояниеОпубликовано - 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11622 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 43545758