Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › Рецензирование
We introduce a novel approach to constructing user profiles for recommender systems based on full-text items such as posts in a social network and implicit ratings (in the form of likes) that users give them. The profiles measure a user’s interest in various topics mined from the full texts of the items. As a result, we get a user profile that can be used for cold start recommendations for items, targeted advertisement, and other purposes. Our experiments show that the method performs on a level comparable with classical collaborative filtering algorithms while at the same time being a cold start approach, i.e., it does not use the likes of an item being recommended.
| Язык оригинала | английский |
|---|---|
| Название основной публикации | Analysis of Images, Social Networks and Texts - 5th International Conference, AIST 2016, Revised Selected Papers |
| Редакторы | Natalia Loukachevitch, Alexander Panchenko, Konstantin Vorontsov, Valeri G. Labunets, Andrey V. Savchenko, Dmitry I. Ignatov, Sergey I. Nikolenko, Mikhail Yu. Khachay |
| Издатель | Springer Nature |
| Страницы | 196-207 |
| Число страниц | 12 |
| ISBN (печатное издание) | 9783319529196 |
| DOI | |
| Состояние | Опубликовано - 2017 |
| Опубликовано для внешнего пользования | Да |
| Событие | 5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016 - Yekaterinburg, Российская Федерация Продолжительность: 7 апр 2016 → 9 апр 2016 |
| Название | Communications in Computer and Information Science |
|---|---|
| Том | 661 |
| ISSN (печатное издание) | 1865-0929 |
| конференция | 5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016 |
|---|---|
| Страна/Tерритория | Российская Федерация |
| Город | Yekaterinburg |
| Период | 7/04/16 → 9/04/16 |
ID: 95167506