DOI

We introduce a novel approach to constructing user profiles for recommender systems based on full-text items such as posts in a social network and implicit ratings (in the form of likes) that users give them. The profiles measure a user’s interest in various topics mined from the full texts of the items. As a result, we get a user profile that can be used for cold start recommendations for items, targeted advertisement, and other purposes. Our experiments show that the method performs on a level comparable with classical collaborative filtering algorithms while at the same time being a cold start approach, i.e., it does not use the likes of an item being recommended.

Язык оригиналаанглийский
Название основной публикацииAnalysis of Images, Social Networks and Texts - 5th International Conference, AIST 2016, Revised Selected Papers
РедакторыNatalia Loukachevitch, Alexander Panchenko, Konstantin Vorontsov, Valeri G. Labunets, Andrey V. Savchenko, Dmitry I. Ignatov, Sergey I. Nikolenko, Mikhail Yu. Khachay
ИздательSpringer Nature
Страницы196-207
Число страниц12
ISBN (печатное издание)9783319529196
DOI
СостояниеОпубликовано - 2017
Опубликовано для внешнего пользованияДа
Событие5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016 - Yekaterinburg, Российская Федерация
Продолжительность: 7 апр 20169 апр 2016

Серия публикаций

НазваниеCommunications in Computer and Information Science
Том661
ISSN (печатное издание)1865-0929

конференция

конференция5th International Conference on Analysis of Images, Social Networks and Texts, AIST 2016
Страна/TерриторияРоссийская Федерация
ГородYekaterinburg
Период7/04/169/04/16

    Предметные области Scopus

  • Компьютерные науки (все)
  • Математика (все)

    Области исследований

  • recommender system, user profiling, natural language processing, machine learning, vector semantics

ID: 95167506