DOI

The concept of the tangent and cotangent bundles plays a central role in describing the dynamics of mechanical systems with singular configuration space. There is no any unified approach to the description of these objects at the present time. The reason for considering a particular construction is that the constructed model gives these bundles in the classical case. One example of such a generalization is the algebra of cosymbols of differential operators of the smooth functions algebra on a singular manifold in the category of geometric modules. This algebra has the natural structure of the Hopf algebra and the algebra dual to it in the classical case coincides with the cotangent bundle of a smooth manifold. Generalizing this example, we introduce the notion of a universal graded algebra for which we can define the structure of the Hopf algebra and the Poisson bracket is defined in a natural way on the dual algebra. This allows us to determine the evolution equation of the system.

Переведенное названиеУниверсальная градуированная алгебра Хопфа и классическая механика
Язык оригиналаанглийский
Номер статьи012042
Страницы (с-по)1-4
Число страниц4
ЖурналJournal of Physics: Conference Series
Том1141
Номер выпуска1
DOI
СостояниеОпубликовано - 21 дек 2018
Событие7th International Conference on Mathematical Modeling in Physical Sciences - МГУ, Москва, Российская Федерация
Продолжительность: 27 авг 201831 авг 2018
Номер конференции: 7
https://icmsquare.net

    Предметные области Scopus

  • Математика (все)

ID: 36840741