DOI

It is shown that equations of the form φ(X) = ψ(X), in which the unknown X is a set of natural numbers and φ, ψ use the operations of union, intersection and addition of sets S + T = {m + n , m ∈ S, n ∈ T}, can simulate systems of equations φj(X1, ... , Xn) = φj(X1, ... , Xn) with 1 ≤ j ≤ ℓ, in the sense that solutions of any such system are encoded in the solutions of the corresponding equation. This implies computational universality of least and greatest solutions of equations φ(X) = ψ(X), as well as undecidability of their basic decision problems. It is sufficient to use only singleton constants in the construction. All results equally apply to language equations over a one-letter alphabet Σ = {a}.

Язык оригиналаанглийский
Страницы (с-по)329-348
Число страниц20
ЖурналFundamenta Informaticae
Том104
Номер выпуска4
DOI
СостояниеОпубликовано - 1 дек 2010
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Алгебра и теория чисел
  • Информационные системы
  • Математика и теория расчета

ID: 41142892