Standard

Uniqueness of Gabor series. / Belov, Y.

в: Applied and Computational Harmonic Analysis, Том 39, № 3, 2015, стр. 545-551.

Результаты исследований: Научные публикации в периодических изданияхстатья

Harvard

Belov, Y 2015, 'Uniqueness of Gabor series', Applied and Computational Harmonic Analysis, Том. 39, № 3, стр. 545-551. https://doi.org/10.1016/j.acha.2015.03.006

APA

Belov, Y. (2015). Uniqueness of Gabor series. Applied and Computational Harmonic Analysis, 39(3), 545-551. https://doi.org/10.1016/j.acha.2015.03.006

Vancouver

Belov Y. Uniqueness of Gabor series. Applied and Computational Harmonic Analysis. 2015;39(3):545-551. https://doi.org/10.1016/j.acha.2015.03.006

Author

Belov, Y. / Uniqueness of Gabor series. в: Applied and Computational Harmonic Analysis. 2015 ; Том 39, № 3. стр. 545-551.

BibTeX

@article{7be13984d22d4fa89e4707c517f7d2d0,
title = "Uniqueness of Gabor series",
abstract = "We prove that any complete and minimal Gabor system of Gaussians is a Markushevich basis in L2(R).",
author = "Y. Belov",
year = "2015",
doi = "10.1016/j.acha.2015.03.006",
language = "English",
volume = "39",
pages = "545--551",
journal = "Applied and Computational Harmonic Analysis",
issn = "1063-5203",
publisher = "Elsevier",
number = "3",

}

RIS

TY - JOUR

T1 - Uniqueness of Gabor series

AU - Belov, Y.

PY - 2015

Y1 - 2015

N2 - We prove that any complete and minimal Gabor system of Gaussians is a Markushevich basis in L2(R).

AB - We prove that any complete and minimal Gabor system of Gaussians is a Markushevich basis in L2(R).

U2 - 10.1016/j.acha.2015.03.006

DO - 10.1016/j.acha.2015.03.006

M3 - Article

VL - 39

SP - 545

EP - 551

JO - Applied and Computational Harmonic Analysis

JF - Applied and Computational Harmonic Analysis

SN - 1063-5203

IS - 3

ER -

ID: 3947091