Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We approximate intersection numbers [formula presented] on Deligne–Mumford’s moduli space Mg,n of genus g stable complex curves with n marked points by certain closed-form expressions in d1, …, dn. Conjecturally, these approximations become asymptotically exact uniformly in di when g → ∞ and n remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approx-imating expressions multiplied by an explicit factor λ(g, n), which tends to 1 when g → ∞ and d1 + · · · + dn−2 = o(g).
Язык оригинала | английский |
---|---|
Номер статьи | 086 |
Журнал | Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) |
Том | 16 |
DOI | |
Состояние | Опубликовано - 2020 |
ID: 98426195