DOI

We approximate intersection numbers [formula presented] on Deligne–Mumford’s moduli space Mg,n of genus g stable complex curves with n marked points by certain closed-form expressions in d1, …, dn. Conjecturally, these approximations become asymptotically exact uniformly in di when g → ∞ and n remains bounded or grows slowly. In this note we prove a lower bound for the intersection numbers in terms of the above-mentioned approx-imating expressions multiplied by an explicit factor λ(g, n), which tends to 1 when g → ∞ and d1 + · · · + dn−2 = o(g).

Язык оригиналаанглийский
Номер статьи086
ЖурналSymmetry, Integrability and Geometry: Methods and Applications (SIGMA)
Том16
DOI
СостояниеОпубликовано - 2020

    Предметные области Scopus

  • Анализ
  • Математическая физика
  • Геометрия и топология

ID: 98426195