DOI

Several necessary and sufficient conditions for the existence of uniform or C1-approximation of functions on compact subsets of ℝ2 by solutions of elliptic systems of the form c11ux1x1 + 2c12ux1x2 + c22ux2x2 = 0 with constant complex coefficients c11, c12, and c22 are obtained. The proofs are based on a refinement of Vitushkin's localization method, in which one constructs localized approximating functions by 'gluing together' some special many-valued solutions of the above equations. The resulting conditions of approximation are of a topological and metric nature.

Язык оригиналаанглийский
Страницы (с-по)285-307
Число страниц23
ЖурналSbornik Mathematics
Том190
Номер выпуска1-2
DOI
СостояниеОпубликовано - 1999
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Алгебра и теория чисел

ID: 86670029