Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Several necessary and sufficient conditions for the existence of uniform or C1-approximation of functions on compact subsets of ℝ2 by solutions of elliptic systems of the form c11ux1x1 + 2c12ux1x2 + c22ux2x2 = 0 with constant complex coefficients c11, c12, and c22 are obtained. The proofs are based on a refinement of Vitushkin's localization method, in which one constructs localized approximating functions by 'gluing together' some special many-valued solutions of the above equations. The resulting conditions of approximation are of a topological and metric nature.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 285-307 |
Число страниц | 23 |
Журнал | Sbornik Mathematics |
Том | 190 |
Номер выпуска | 1-2 |
DOI | |
Состояние | Опубликовано - 1999 |
Опубликовано для внешнего пользования | Да |
ID: 86670029