Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Uniaxial Attitude Stabilization of a Rigid Body under Conditions of Nonstationary Perturbations with Zero Mean Values. / Aleksandrov, A. Yu.; Tikhonov, A. A.
в: Vestnik St. Petersburg University: Mathematics, Том 52, № 2, 01.04.2019, стр. 187-193.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Uniaxial Attitude Stabilization of a Rigid Body under Conditions of Nonstationary Perturbations with Zero Mean Values
AU - Aleksandrov, A. Yu.
AU - Tikhonov, A. A.
N1 - Aleksandrov, A.Y. & Tikhonov, A.A. Vestnik St.Petersb. Univ.Math. (2019) 52: 187. https://doi.org/10.1134/S106345411902002X
PY - 2019/4/1
Y1 - 2019/4/1
N2 - This paper deals with the problem of uniaxial stabilization of the angular position of a rigid body exposed to a nonstationary perturbing torque. The perturbing torque is represented as a linear combination of homogeneous functions with variable coefficients. It is assumed that the order of homogeneity of perturbations does not exceed the order of homogeneity of the restoring torque, and the variable coefficients in the components of the disturbing torque have zero mean values. A theorem on sufficient conditions for the asymptotic stability of a programmed motion of the body is proven using the Lyapunov direct method. The determined conditions guaranteeing the solution to the problem of body uniaxial stabilization do not impose any restrictions on the amplitudes of oscillations of the disturbance torque coefficients. Results of numerical modeling are presented that confirm the conclusions obtained analytically.
AB - This paper deals with the problem of uniaxial stabilization of the angular position of a rigid body exposed to a nonstationary perturbing torque. The perturbing torque is represented as a linear combination of homogeneous functions with variable coefficients. It is assumed that the order of homogeneity of perturbations does not exceed the order of homogeneity of the restoring torque, and the variable coefficients in the components of the disturbing torque have zero mean values. A theorem on sufficient conditions for the asymptotic stability of a programmed motion of the body is proven using the Lyapunov direct method. The determined conditions guaranteeing the solution to the problem of body uniaxial stabilization do not impose any restrictions on the amplitudes of oscillations of the disturbance torque coefficients. Results of numerical modeling are presented that confirm the conclusions obtained analytically.
KW - asymptotic stability
KW - attitude motion
KW - nonlinear perturbations
KW - uniaxial stabilization
KW - EVOLUTION
KW - STABILITY
KW - ROTARY MOTION
UR - http://www.scopus.com/inward/record.url?scp=85067209113&partnerID=8YFLogxK
UR - https://link.springer.com/article/10.1134/S106345411902002X
U2 - 10.1134/S106345411902002X
DO - 10.1134/S106345411902002X
M3 - Article
AN - SCOPUS:85067209113
VL - 52
SP - 187
EP - 193
JO - Vestnik St. Petersburg University: Mathematics
JF - Vestnik St. Petersburg University: Mathematics
SN - 1063-4541
IS - 2
ER -
ID: 43628416