DOI

We prove that the homomorphic quasiorder of finite k-labeled forests has undecidable elementary theory for k ≥ 3, in contrast to the known decidability result for k = 2. We establish also undecidablity (again for every k ≥ 3) of elementary theories of two other relevant structures: the homomorphic quasiorder of finite k-labeled trees, and of finite k-labeled trees with a fixed label of the root element. © Springer-Verlag Berlin Heidelberg 2006.
Язык оригиналаанглийский
Название основной публикацииLogical Approaches to Computational Barriers (CiE 2006)
Страницы289-296
Число страниц8
DOI
СостояниеОпубликовано - 1 янв 2006
Событиеcomputability in europe-2006 -
Продолжительность: 30 июн 2006 → …

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ИздательSpringer Nature
Том3988
ISSN (печатное издание)0302-9743

конференция

конференцияcomputability in europe-2006
Период30/06/06 → …

ID: 127139962