Standard

Uncovering the mechanism of water-promoted electrochemical degradation of NiSalen polymers. / Alekseeva, E.V.; Vereshchagin, A.A.; Novozhilova, M.V.; Panjwani, N.A.; Novoselova, J.V.; Lukyanov, D.A.; Beletskii, E.V.; Behrends, J.; Sizov, V.V.; Levin, O.V.

в: Journal of Electroanalytical Chemistry, Том 935, 117310, 01.04.2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{a32630d231e940028ba8e9fe4ce48ee8,
title = "Uncovering the mechanism of water-promoted electrochemical degradation of NiSalen polymers",
abstract = "Polymeric nickel complexes with salen-type ligands (NiSalen) can serve as useful materials for a range of applications, including sensors, catalytic systems and energy storage devices. Although they surpass convenient conductive polymers in some aspects, they are still in the shadow of them. What pushes researchers away from NiSalen polymers is the low reproducibility of their electrochemical response, which sometimes can vary from day to day. Despite the convenient conductive polymers, which electrochemistry is often tolerant to moisture, most of the NiSalen polymers are highly water sensitive, which causes the uncertainty of their behavior, including the degradation of electrochemical activity and electrical conductance. In the present study, we demonstrate how NiSalen polymers degrade in the presence of H2O, and how the 3-substituent alternates the ultimate site of the H2O attack on the polymer. By a combination of the computational, electrochemical and spectroelectrochemical techniques, we demonstrate that the water-promoted degradation of the NiSalen polymer occurs only while it is oxidized. We have found that H2O attacks the Ni atom of the polymer, switching off charge transport along the polymer chain, but an introduction of CH3O-groups in the ligand structure changes the binding mode of H2O, protecting the polymer from degradation. {\textcopyright} 2023 Elsevier B.V.",
keywords = "conductive polymers, degradation, Polarons, Electrooxidation, stability, Degradation, Stability, Conductive polymers",
author = "E.V. Alekseeva and A.A. Vereshchagin and M.V. Novozhilova and N.A. Panjwani and J.V. Novoselova and D.A. Lukyanov and E.V. Beletskii and J. Behrends and V.V. Sizov and O.V. Levin",
note = "Export Date: 25 March 2023 Пристатейные ссылки: Li, X., Li, J., Deng, F., Kang, F., Enhanced electrochemical performance of nitrogen-doped graphene and poly[Ni(salen)] composite electrodes for supercapacitors (2018) Ionics; Deng, F., Li, X., Ding, F., Niu, B., Li, J., Pseudocapacitive energy storage in schiff base polymer with salphen-type ligands (2018) J. Phys. Chem. C, 122, pp. 5325-5333; Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., Levin, O.V., Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties (2017) Electrochimica Acta, 225, pp. 378-391; Zhu, Z., Lu, J., Li, X., Xu, G., Chen, C., Li, J., Effects of potential modes on performances of electrodeposited poly[Ni(salen)]/MWCNTs composite as supercapacitor electrode material (2016) Electrochemistry, 84, pp. 427-431; Yan, G., Li, J.L., Zhang, Y.K., Gao, F., Kang, F.Y., Electrochemical polymerization and energy storage for poly[Ni(salen)] as supercapacitor electrode material (2014) J. Phys. Chem. C, 118, pp. 9911-9917; Eliseeva, S.N., Alekseeva, E.V.; Vereshchagin, A.A.; Volkov, A.I.; Vlasov, P.S.; Konev, A.S.; Levin, O.V. Nickel-Salen Type polymers as cathode materials for rechargeable lithium batteries. Macromol. Chem. Phys. 2017, 218, 10.1002/macp.201700361; Vereshchagin, A.A., Lukyanov, D.A., Kulikov, I.R., Panjwani, N.A., Alekseeva, E.A., Behrends, J., Levin, O.V., The fast and the capacious: A [Ni(Salen)]-TEMPO redox-conducting polymer for organic batteries (2020) Batteries & Supercaps, 4, pp. 336-346; Kulikov, I., Panjwani, N.A., Vereshchagin, A.A., Spallek, D., Lukianov, D.A., Alekseeva, E.V., Levin, O.V., Behrends, J., Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy (2022) Energy Environ. Sci., 15, pp. 3275-3290; Vereshchagin, A.A., Vlasov, P.S., Konev, A.S., Yang, P., Grechishnikova, G.A., Levin, O.V., Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices (2019) Electrochim. Acta, 295, pp. 1075-1084; O'Meara, C., Karushev, M.P., Polozhentceva, I.A., Dharmasena, S., Cho, H., Yurkovich, B.J., Kogan, S., Kim, J.H., Nickel-salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries (2019) ACS Appl. Mater. Interfaces, 11, pp. 525-533; Beletskii, E.V., Fedorova, A.A., Lukyanov, D.A., Kalnin, A.Y., Ershov, V.A., Danilov, S.E., Spiridonova, D.V., Levin, O.V., Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection (2021) J. Power Sources, 490; Beletskii, E.V., Alekseeva, E.V.; Levin, O.V. Variable-resistance materials for lithium-ion batteries. Russian Chem. Rev. 2022, 91, 10.1070/rcr5030; Konev, A.S., Kayumov, M.Y., Karushev, M.P., Novoselova, Y.V., Lukyanov, D.A., Alekseeva, E.V., Levin, O.V., Polymeric metal salen-type complexes as catalysts for photoelectrocatalytic hydrogen peroxide production (2018) ChemElectroChem, 5, pp. 3138-3142; Petrov, A.A., Lukyanov, D.A.; Kopytko, O.A.; Novoselova, J.V.; Alekseeva, E.V.; Levin, O.V. Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants. Catalysts 2021, 11, 10.3390/catal11060729; {\L}{\c e}picka, K., Pieta, P., Shkurenko, A., Borowicz, P., Majewska, M., Rosenkranz, M., Avdoshenko, S., Kutner, W., Spectroelectrochemical approaches to mechanistic aspects of charge transport in meso-nickel(II) Schiff base electrochromic polymer (2017) J. Phys. Chem. C, 121, pp. 16710-16720; Nunes, M., Araujo, M., Fonseca, J., Moura, C., Hillman, R., Freire, C., High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films (2016) ACS Appl. Mater. Interfaces, 8, pp. 14231-14243; Martins, T.S., Bott-Neto, J.L., Raymundo-Pereira, P.A., Ticianelli, E.A., Machado, S.A.S., An electrochemical furosemide sensor based on pencil graphite surface modified with polymer film Ni-salen and Ni(OH)2/C nanoparticles (2018) Sensors Actuators B: Chemical, 276, pp. 378-387; Bott-Neto, J.L.; Martins, T.S.; Buscaglia, L.A.; Santiago, P.V.B.; Fern{\'a}ndez, P.S.; Machado, S.A.S.; Oliveira Jr, O.N. A portable system for photoelectrochemical detection of lactate on TiO2 nanoparticles and [Ni(salen)] polymeric film. Sensors Actuators B: Chemical 2021, 345, 10.1016/j.snb.2021.130390; Sukwattanasinitt, M., Nantalaksakul, A., Potisatityuenyong, A., Tuntulani, T., Chailapakul, O., Praphairakait, N., An electrochemical sensor from a soluble polymeric Ni−salen complex (2003) Chem. Mater., 15, pp. 4337-4339; Beletskii, E.V., Volosatova, Y.A., Eliseeva, S.N., Levin, O.V., The effect of electrode potential on the conductivity of polymer complexes of nickel with salen ligands (2019) Russian J. Electrochem., 55, pp. 339-345; Chepurnaya, I.A., Karushev, M.P., Alekseeva, E.V., Lukyanov, D.A., Levin, O.V., Redox-conducting polymers based on metal-salen complexes for energy storage applications (2020) Pure Appl. Chem., 92, pp. 1239-1258; Chepurnaya, I.A., , pp. 314-317. , Gaman'kov, P.V.; T. Yu. Rodyagina; Vasil'eva, S.V.; Timonov, A.M. Electropolymerization of Palladium and Nickel Complexes with Schiff Bases:The Effect of Structure of the Source Compounds. Russ. J. Elchem. 2003, 39; Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., Malev, V.V., Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases (2013) Electrochim. Acta, 109, pp. 153-161; Novozhilova, M.V., Smirnova, E.A., Karushev, M.P., Timonov, A.M., Malev, V.V., Levin, O.V., Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases (2016) Russ. J. Elchem., 52, pp. 1183-1190; Li, J., Gao, F., Zhang, Y., Kang, F., Wang, X., Ye, F., Yang, J., Electropolymerization of Ni(salen) on carbon nanotube carrier as a capacitive material by pulse potentiostatic method (2012) Science China Chemistry, 55, pp. 1338-1344; Guo, P., Hui, T.-W., Cheung, K.-C., Wong, K.-Y., Shiu, K.-K., Charge propagation in nickel 6,6′-bis(2′-hydroxyphenyl)-2,2′-bipyridine polymer film doped with perchlorate anions (2001) Journal of Electroanalytical Chemistry, 498, pp. 142-151; Vasil'eva, S.V., Balashev, K.P., Timonov, A.M., Effects of the nature of the ligand and solvent on the electrooxidation of complexes formed by nickel and Schiff's bases (1998) Russ. J. Elchem., 34, pp. 978-983; Li, J.L., Gao, F., Zhang, Y.K., Wang, X.D., Electrochemical polymerization of nano-micro sheaf/wire conducting polymer poly[Ni(Salen)] for electrochemical energy storage system (2010) Chinese J. Polym. Sci., 28, pp. 667-671; Alekseeva, E., Ershov, V., Konev, A., Levin, O., Dependence of stability of the polymerizesd nickel complexes with schiff bases on the structure of the ligand diimine bridge (2018) Ecs Transactions, 87, pp. 167-177; Ershov, V.A., Alekseeva, E.V., Konev, A.S., Chirkov, N.S., Stelmashuk, T.A., Levin, O.V., Effect of structure of polymeric nickel complexes with salen-type ligands on the rate of their electroactivity decay in solutions of water-containing electrolytes (2018) Russian Journal of General Chemistry, 88, pp. 277-283; Polozhentseva, Y.A., Karushev, M.P., Rumyantsev, A.M., Chepurnaya, I.A., Timonov, A.M., A lithium-ion supercapacitor with a positive electrode based on a carbon material modified by polymeric complexes of nickel with Schiff bases (2020) Technical Physics Letters, 46, pp. 196-199; {\L}{\c e}picka, K., Pieta, P., Francius, G., Walcarius, A., Kutner, W., Structure-reactivity requirements with respect to nickel-salen based polymers for enhanced electrochemical stability (2019) Electrochimica Acta, 315, pp. 75-83; Audebert, P., Capdevielle, P., Maumy, M., Redox and conducting polymers based on salen-type metal units - Electrochemical study and some characteristics (1992) Nouveau Journal de Chimie, 16, pp. 697-703; Audebert, P., Hapiot, P., Capdevielle, P., Maumy, M., Electrochemical polymerization of several salen-type complexes - Kinetic-studies in the microsecond time range (1992) Journal of Electroanalytical Chemistry, 338, pp. 269-278; Holm, R.H., Everett, G.W., Jr, Chakravorty, A., Metal complexes of schiff bases and β-ketoamines (1966) Progress in Inorganic Chemistry, pp. 83-214; Wittmann, J.J., Can, T.V., Eckardt, M., Harneit, W., Griffin, R.G., Corzilius, B., High-precision measurement of the electron spin g factor of trapped atomic nitrogen in the endohedral fullerene N@C(60) (2018) Journal of Magnetic Resonance, 290, pp. 12-17; Sauerbrey, G., Verwendung von Schwingquarzen zur W{\"a}gung d{\"u}nner Schichten und zur Mikrow{\"a}gung (1959) Zeitschrift f{\"u}r Physik, 155, pp. 206-222; Gabrielli, C., Keddam, M., Torresi, R., Calibration of the electrochemical quartz crystal microbalance (1991) J. Elchem. Soc., 138, pp. 2657-2660; Topart, P.A., Noel, M.A.M., High-frequency impedance analysis of quartz crystal microbalances. 2. Electrochemical deposition and redox switching of conducting polymers (1994) Analytical Chemistry, 66, pp. 2926-2934; Bag, B., Mondal, N., Rosair, G., Mitra, S., The first thermally-stable singly oxo-bridged dinuclear Ni(III) complex (2000) Chemical Communications, pp. 1729-1730; Rotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Del Valle, C.P., Saint-Aman, E., Pierre, J.L., Fine tuning of the oxidation locus, and electron transfer, in nickel complexes of pro-radical ligands (2006) Chem.-a Europ. J., 12, pp. 2293-2302; Rotthaus, O., Thomas, F., Jarjayes, O., Philouze, C., Saint-Aman, E., Pierre, J.L., Valence tautomerism in octahedral and square-planar phenoxyl-nickel(II) complexes: Are imino nitrogen atoms good friends? (2006) Chem.-a Europ. J., 12, pp. 6953-6962; Krasikova, S.A., Besedina, M.A., Karushev, M.P., Dmitrieva, E.A., Timonov, A.M., In situ electrochemical microbalance studies of polymerization and redox processes in polymeric complexes of transition metals with Schiff bases (2010) Russ. J. Elchem., 46, pp. 218-226; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2014) Journal of Solid State Electrochemistry; Wei, Q., Mukaida, M., Ishida, T., Extracting carrier mobility in conducting polymers using a photoinduced charge transfer reaction (2018) The Journal of Physical Chemistry C, 122, pp. 15922-15928; Le, T.H., Kim, Y., Yoon, H., Electrical and Electrochemical Properties of Conducting Polymers (2017) Polymers (Basel), 9; Dehghani, M., Gupta-Bleuler quantization for massive and massless free vector fields (2009) Brazilian Journal of Physics, 39, pp. 559-563; Li, X., Li, J., Kang, F., Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents (2019) Ionics, 25, pp. 1045-1055; Shagisultanova, G.A., Shchukarev, A.V., Semenistaya, T.V., Possibilities of X-ray photoelectron spectroscopy in studying the structure and properties of polymers based on transition metal complexes with Schiff bases (2005) Russian Journal of Inorganic Chemistry, 50, pp. 912-924; Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni (2011) Applied Surface Science, 257, pp. 2717-2730; Lian, K.K., Kirk, D.W., Thorpe, S.J., Investigation of a “two-state” tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy (1995) Journal of The Electrochemical Society, 142, pp. 3704-3712; Kuznetsov, N., Yang, P., Gorislov, G., Zhukov, Y., Bocharov, V., Malev, V., Levin, O., Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes (2018) Electrochimica Acta, 271, pp. 190-202; Dub{\'e}, C.E., Workie, B., Kounaves, S.P., Robbat, A., Aksub, M.L., Davies, G., Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex (1995) Journal of The Electrochemical Society, 142, pp. 3357-3365; Roustila, A., Severac, C., Ch{\^e}ne, J., Percheron-Gu{\'e}gan, A., Hydrogen effects on the electronic and microstructural properties of Ce, Ni, and CeNi2 intermetallic compound (1994) Surface Science, 311, pp. 33-44; Thube, M.G., Kulkarni, S.K., Huerta, D., Nigavekar, A.S., X-ray-photoelectron-spectroscopy study of the electronic structure of Ni-P metallic glasses (1986) Physical Review B: Condensed Matter, 34, pp. 6874-6879; Dmitrieva, E., Rosenkranz, M., Danilova, J.S., Smirnova, E.A., Karushev, M.P., Chepurnaya, I.A., Timonov, A.M., Radical formation in polymeric nickel complexes with N 2 O 2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study (2018) Electrochimica Acta, 283, pp. 1742-1752; De Castro, B., Freire, C., EPR and electrochemical study of nickel(III) complexes of bis(3,5-dichlorosalicylaldehyde) o-phenylenediimine. Evidence for adduct formation with pyridines (2002) Inorganic Chemistry, 29, pp. 5113-5119; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2015) Journal of Solid State Electrochemistry, 19, pp. 453-468; Vilas-Boas, M., Freire, C., de Castro, B., Christensen, P.A., Hillman, A.R., Spectroelectrochemical characterisation of poly[Ni(saltMe)]-modified electrodes (2001) Chemistry, 7, pp. 139-150; Tedim, J., Patr{\'i}cio, S., Fonseca, J., Magalh{\~a}es, A.L., Moura, C., Hillman, A.R., Freire, C., Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level (2011) Synthetic Metals, 161, pp. 680-691; Clarke, R.M., Herasymchuk, K., Storr, T., Electronic structure elucidation in oxidized metal–salen complexes (2017) Coordination Chemistry Reviews, 352, pp. 67-82; Freire, C., de Castro, B., Spectroscopic characterisation of electrogenerated nickel(III) species. Complexes with N2O2 Schiff-base ligands derived from salicylaldehyde (1998) Journal of the Chemical Society-Dalton Transactions, pp. 1491-1497; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2014) Journal of Solid State Electrochemistry, 19, pp. 453-468",
year = "2023",
month = apr,
day = "1",
doi = "10.1016/j.jelechem.2023.117310",
language = "English",
volume = "935",
journal = "Journal of Electroanalytical Chemistry",
issn = "1572-6657",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Uncovering the mechanism of water-promoted electrochemical degradation of NiSalen polymers

AU - Alekseeva, E.V.

AU - Vereshchagin, A.A.

AU - Novozhilova, M.V.

AU - Panjwani, N.A.

AU - Novoselova, J.V.

AU - Lukyanov, D.A.

AU - Beletskii, E.V.

AU - Behrends, J.

AU - Sizov, V.V.

AU - Levin, O.V.

N1 - Export Date: 25 March 2023 Пристатейные ссылки: Li, X., Li, J., Deng, F., Kang, F., Enhanced electrochemical performance of nitrogen-doped graphene and poly[Ni(salen)] composite electrodes for supercapacitors (2018) Ionics; Deng, F., Li, X., Ding, F., Niu, B., Li, J., Pseudocapacitive energy storage in schiff base polymer with salphen-type ligands (2018) J. Phys. Chem. C, 122, pp. 5325-5333; Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., Levin, O.V., Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties (2017) Electrochimica Acta, 225, pp. 378-391; Zhu, Z., Lu, J., Li, X., Xu, G., Chen, C., Li, J., Effects of potential modes on performances of electrodeposited poly[Ni(salen)]/MWCNTs composite as supercapacitor electrode material (2016) Electrochemistry, 84, pp. 427-431; Yan, G., Li, J.L., Zhang, Y.K., Gao, F., Kang, F.Y., Electrochemical polymerization and energy storage for poly[Ni(salen)] as supercapacitor electrode material (2014) J. Phys. Chem. C, 118, pp. 9911-9917; Eliseeva, S.N., Alekseeva, E.V.; Vereshchagin, A.A.; Volkov, A.I.; Vlasov, P.S.; Konev, A.S.; Levin, O.V. Nickel-Salen Type polymers as cathode materials for rechargeable lithium batteries. Macromol. Chem. Phys. 2017, 218, 10.1002/macp.201700361; Vereshchagin, A.A., Lukyanov, D.A., Kulikov, I.R., Panjwani, N.A., Alekseeva, E.A., Behrends, J., Levin, O.V., The fast and the capacious: A [Ni(Salen)]-TEMPO redox-conducting polymer for organic batteries (2020) Batteries & Supercaps, 4, pp. 336-346; Kulikov, I., Panjwani, N.A., Vereshchagin, A.A., Spallek, D., Lukianov, D.A., Alekseeva, E.V., Levin, O.V., Behrends, J., Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy (2022) Energy Environ. Sci., 15, pp. 3275-3290; Vereshchagin, A.A., Vlasov, P.S., Konev, A.S., Yang, P., Grechishnikova, G.A., Levin, O.V., Novel highly conductive cathode material based on stable-radical organic framework and polymerized nickel complex for electrochemical energy storage devices (2019) Electrochim. Acta, 295, pp. 1075-1084; O'Meara, C., Karushev, M.P., Polozhentceva, I.A., Dharmasena, S., Cho, H., Yurkovich, B.J., Kogan, S., Kim, J.H., Nickel-salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries (2019) ACS Appl. Mater. Interfaces, 11, pp. 525-533; Beletskii, E.V., Fedorova, A.A., Lukyanov, D.A., Kalnin, A.Y., Ershov, V.A., Danilov, S.E., Spiridonova, D.V., Levin, O.V., Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection (2021) J. Power Sources, 490; Beletskii, E.V., Alekseeva, E.V.; Levin, O.V. Variable-resistance materials for lithium-ion batteries. Russian Chem. Rev. 2022, 91, 10.1070/rcr5030; Konev, A.S., Kayumov, M.Y., Karushev, M.P., Novoselova, Y.V., Lukyanov, D.A., Alekseeva, E.V., Levin, O.V., Polymeric metal salen-type complexes as catalysts for photoelectrocatalytic hydrogen peroxide production (2018) ChemElectroChem, 5, pp. 3138-3142; Petrov, A.A., Lukyanov, D.A.; Kopytko, O.A.; Novoselova, J.V.; Alekseeva, E.V.; Levin, O.V. Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants. Catalysts 2021, 11, 10.3390/catal11060729; Łępicka, K., Pieta, P., Shkurenko, A., Borowicz, P., Majewska, M., Rosenkranz, M., Avdoshenko, S., Kutner, W., Spectroelectrochemical approaches to mechanistic aspects of charge transport in meso-nickel(II) Schiff base electrochromic polymer (2017) J. Phys. Chem. C, 121, pp. 16710-16720; Nunes, M., Araujo, M., Fonseca, J., Moura, C., Hillman, R., Freire, C., High-performance electrochromic devices based on poly[Ni(salen)]-type polymer films (2016) ACS Appl. Mater. Interfaces, 8, pp. 14231-14243; Martins, T.S., Bott-Neto, J.L., Raymundo-Pereira, P.A., Ticianelli, E.A., Machado, S.A.S., An electrochemical furosemide sensor based on pencil graphite surface modified with polymer film Ni-salen and Ni(OH)2/C nanoparticles (2018) Sensors Actuators B: Chemical, 276, pp. 378-387; Bott-Neto, J.L.; Martins, T.S.; Buscaglia, L.A.; Santiago, P.V.B.; Fernández, P.S.; Machado, S.A.S.; Oliveira Jr, O.N. A portable system for photoelectrochemical detection of lactate on TiO2 nanoparticles and [Ni(salen)] polymeric film. Sensors Actuators B: Chemical 2021, 345, 10.1016/j.snb.2021.130390; Sukwattanasinitt, M., Nantalaksakul, A., Potisatityuenyong, A., Tuntulani, T., Chailapakul, O., Praphairakait, N., An electrochemical sensor from a soluble polymeric Ni−salen complex (2003) Chem. Mater., 15, pp. 4337-4339; Beletskii, E.V., Volosatova, Y.A., Eliseeva, S.N., Levin, O.V., The effect of electrode potential on the conductivity of polymer complexes of nickel with salen ligands (2019) Russian J. Electrochem., 55, pp. 339-345; Chepurnaya, I.A., Karushev, M.P., Alekseeva, E.V., Lukyanov, D.A., Levin, O.V., Redox-conducting polymers based on metal-salen complexes for energy storage applications (2020) Pure Appl. Chem., 92, pp. 1239-1258; Chepurnaya, I.A., , pp. 314-317. , Gaman'kov, P.V.; T. Yu. Rodyagina; Vasil'eva, S.V.; Timonov, A.M. Electropolymerization of Palladium and Nickel Complexes with Schiff Bases:The Effect of Structure of the Source Compounds. Russ. J. Elchem. 2003, 39; Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., Malev, V.V., Charge transfer processes on electrodes modified by polymer films of metal complexes with Schiff bases (2013) Electrochim. Acta, 109, pp. 153-161; Novozhilova, M.V., Smirnova, E.A., Karushev, M.P., Timonov, A.M., Malev, V.V., Levin, O.V., Synthesis and study of catalysts of electrochemical oxygen reduction reaction based on polymer complexes of nickel and cobalt with Schiff bases (2016) Russ. J. Elchem., 52, pp. 1183-1190; Li, J., Gao, F., Zhang, Y., Kang, F., Wang, X., Ye, F., Yang, J., Electropolymerization of Ni(salen) on carbon nanotube carrier as a capacitive material by pulse potentiostatic method (2012) Science China Chemistry, 55, pp. 1338-1344; Guo, P., Hui, T.-W., Cheung, K.-C., Wong, K.-Y., Shiu, K.-K., Charge propagation in nickel 6,6′-bis(2′-hydroxyphenyl)-2,2′-bipyridine polymer film doped with perchlorate anions (2001) Journal of Electroanalytical Chemistry, 498, pp. 142-151; Vasil'eva, S.V., Balashev, K.P., Timonov, A.M., Effects of the nature of the ligand and solvent on the electrooxidation of complexes formed by nickel and Schiff's bases (1998) Russ. J. Elchem., 34, pp. 978-983; Li, J.L., Gao, F., Zhang, Y.K., Wang, X.D., Electrochemical polymerization of nano-micro sheaf/wire conducting polymer poly[Ni(Salen)] for electrochemical energy storage system (2010) Chinese J. Polym. Sci., 28, pp. 667-671; Alekseeva, E., Ershov, V., Konev, A., Levin, O., Dependence of stability of the polymerizesd nickel complexes with schiff bases on the structure of the ligand diimine bridge (2018) Ecs Transactions, 87, pp. 167-177; Ershov, V.A., Alekseeva, E.V., Konev, A.S., Chirkov, N.S., Stelmashuk, T.A., Levin, O.V., Effect of structure of polymeric nickel complexes with salen-type ligands on the rate of their electroactivity decay in solutions of water-containing electrolytes (2018) Russian Journal of General Chemistry, 88, pp. 277-283; Polozhentseva, Y.A., Karushev, M.P., Rumyantsev, A.M., Chepurnaya, I.A., Timonov, A.M., A lithium-ion supercapacitor with a positive electrode based on a carbon material modified by polymeric complexes of nickel with Schiff bases (2020) Technical Physics Letters, 46, pp. 196-199; Łępicka, K., Pieta, P., Francius, G., Walcarius, A., Kutner, W., Structure-reactivity requirements with respect to nickel-salen based polymers for enhanced electrochemical stability (2019) Electrochimica Acta, 315, pp. 75-83; Audebert, P., Capdevielle, P., Maumy, M., Redox and conducting polymers based on salen-type metal units - Electrochemical study and some characteristics (1992) Nouveau Journal de Chimie, 16, pp. 697-703; Audebert, P., Hapiot, P., Capdevielle, P., Maumy, M., Electrochemical polymerization of several salen-type complexes - Kinetic-studies in the microsecond time range (1992) Journal of Electroanalytical Chemistry, 338, pp. 269-278; Holm, R.H., Everett, G.W., Jr, Chakravorty, A., Metal complexes of schiff bases and β-ketoamines (1966) Progress in Inorganic Chemistry, pp. 83-214; Wittmann, J.J., Can, T.V., Eckardt, M., Harneit, W., Griffin, R.G., Corzilius, B., High-precision measurement of the electron spin g factor of trapped atomic nitrogen in the endohedral fullerene N@C(60) (2018) Journal of Magnetic Resonance, 290, pp. 12-17; Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung (1959) Zeitschrift für Physik, 155, pp. 206-222; Gabrielli, C., Keddam, M., Torresi, R., Calibration of the electrochemical quartz crystal microbalance (1991) J. Elchem. Soc., 138, pp. 2657-2660; Topart, P.A., Noel, M.A.M., High-frequency impedance analysis of quartz crystal microbalances. 2. Electrochemical deposition and redox switching of conducting polymers (1994) Analytical Chemistry, 66, pp. 2926-2934; Bag, B., Mondal, N., Rosair, G., Mitra, S., The first thermally-stable singly oxo-bridged dinuclear Ni(III) complex (2000) Chemical Communications, pp. 1729-1730; Rotthaus, O., Jarjayes, O., Thomas, F., Philouze, C., Del Valle, C.P., Saint-Aman, E., Pierre, J.L., Fine tuning of the oxidation locus, and electron transfer, in nickel complexes of pro-radical ligands (2006) Chem.-a Europ. J., 12, pp. 2293-2302; Rotthaus, O., Thomas, F., Jarjayes, O., Philouze, C., Saint-Aman, E., Pierre, J.L., Valence tautomerism in octahedral and square-planar phenoxyl-nickel(II) complexes: Are imino nitrogen atoms good friends? (2006) Chem.-a Europ. J., 12, pp. 6953-6962; Krasikova, S.A., Besedina, M.A., Karushev, M.P., Dmitrieva, E.A., Timonov, A.M., In situ electrochemical microbalance studies of polymerization and redox processes in polymeric complexes of transition metals with Schiff bases (2010) Russ. J. Elchem., 46, pp. 218-226; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2014) Journal of Solid State Electrochemistry; Wei, Q., Mukaida, M., Ishida, T., Extracting carrier mobility in conducting polymers using a photoinduced charge transfer reaction (2018) The Journal of Physical Chemistry C, 122, pp. 15922-15928; Le, T.H., Kim, Y., Yoon, H., Electrical and Electrochemical Properties of Conducting Polymers (2017) Polymers (Basel), 9; Dehghani, M., Gupta-Bleuler quantization for massive and massless free vector fields (2009) Brazilian Journal of Physics, 39, pp. 559-563; Li, X., Li, J., Kang, F., Enhanced electrochemical performance of salen-type transition metal polymer with electron-donating substituents (2019) Ionics, 25, pp. 1045-1055; Shagisultanova, G.A., Shchukarev, A.V., Semenistaya, T.V., Possibilities of X-ray photoelectron spectroscopy in studying the structure and properties of polymers based on transition metal complexes with Schiff bases (2005) Russian Journal of Inorganic Chemistry, 50, pp. 912-924; Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni (2011) Applied Surface Science, 257, pp. 2717-2730; Lian, K.K., Kirk, D.W., Thorpe, S.J., Investigation of a “two-state” tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy (1995) Journal of The Electrochemical Society, 142, pp. 3704-3712; Kuznetsov, N., Yang, P., Gorislov, G., Zhukov, Y., Bocharov, V., Malev, V., Levin, O., Electrochemical transformations of polymers formed from nickel (II) complexes with salen-type ligands in aqueous alkaline electrolytes (2018) Electrochimica Acta, 271, pp. 190-202; Dubé, C.E., Workie, B., Kounaves, S.P., Robbat, A., Aksub, M.L., Davies, G., Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex (1995) Journal of The Electrochemical Society, 142, pp. 3357-3365; Roustila, A., Severac, C., Chêne, J., Percheron-Guégan, A., Hydrogen effects on the electronic and microstructural properties of Ce, Ni, and CeNi2 intermetallic compound (1994) Surface Science, 311, pp. 33-44; Thube, M.G., Kulkarni, S.K., Huerta, D., Nigavekar, A.S., X-ray-photoelectron-spectroscopy study of the electronic structure of Ni-P metallic glasses (1986) Physical Review B: Condensed Matter, 34, pp. 6874-6879; Dmitrieva, E., Rosenkranz, M., Danilova, J.S., Smirnova, E.A., Karushev, M.P., Chepurnaya, I.A., Timonov, A.M., Radical formation in polymeric nickel complexes with N 2 O 2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study (2018) Electrochimica Acta, 283, pp. 1742-1752; De Castro, B., Freire, C., EPR and electrochemical study of nickel(III) complexes of bis(3,5-dichlorosalicylaldehyde) o-phenylenediimine. Evidence for adduct formation with pyridines (2002) Inorganic Chemistry, 29, pp. 5113-5119; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2015) Journal of Solid State Electrochemistry, 19, pp. 453-468; Vilas-Boas, M., Freire, C., de Castro, B., Christensen, P.A., Hillman, A.R., Spectroelectrochemical characterisation of poly[Ni(saltMe)]-modified electrodes (2001) Chemistry, 7, pp. 139-150; Tedim, J., Patrício, S., Fonseca, J., Magalhães, A.L., Moura, C., Hillman, A.R., Freire, C., Modulating spectroelectrochemical properties of [Ni(salen)] polymeric films at molecular level (2011) Synthetic Metals, 161, pp. 680-691; Clarke, R.M., Herasymchuk, K., Storr, T., Electronic structure elucidation in oxidized metal–salen complexes (2017) Coordination Chemistry Reviews, 352, pp. 67-82; Freire, C., de Castro, B., Spectroscopic characterisation of electrogenerated nickel(III) species. Complexes with N2O2 Schiff-base ligands derived from salicylaldehyde (1998) Journal of the Chemical Society-Dalton Transactions, pp. 1491-1497; Sizov, V.V., Novozhilova, M.V., Alekseeva, E.V., Karushev, M.P., Timonov, A.M., Eliseeva, S.N., Vanin, A.A., Levin, O.V., Redox transformations in electroactive polymer films derived from complexes of nickel with SalEn-type ligands: computational, EQCM, and spectroelectrochemical study (2014) Journal of Solid State Electrochemistry, 19, pp. 453-468

PY - 2023/4/1

Y1 - 2023/4/1

N2 - Polymeric nickel complexes with salen-type ligands (NiSalen) can serve as useful materials for a range of applications, including sensors, catalytic systems and energy storage devices. Although they surpass convenient conductive polymers in some aspects, they are still in the shadow of them. What pushes researchers away from NiSalen polymers is the low reproducibility of their electrochemical response, which sometimes can vary from day to day. Despite the convenient conductive polymers, which electrochemistry is often tolerant to moisture, most of the NiSalen polymers are highly water sensitive, which causes the uncertainty of their behavior, including the degradation of electrochemical activity and electrical conductance. In the present study, we demonstrate how NiSalen polymers degrade in the presence of H2O, and how the 3-substituent alternates the ultimate site of the H2O attack on the polymer. By a combination of the computational, electrochemical and spectroelectrochemical techniques, we demonstrate that the water-promoted degradation of the NiSalen polymer occurs only while it is oxidized. We have found that H2O attacks the Ni atom of the polymer, switching off charge transport along the polymer chain, but an introduction of CH3O-groups in the ligand structure changes the binding mode of H2O, protecting the polymer from degradation. © 2023 Elsevier B.V.

AB - Polymeric nickel complexes with salen-type ligands (NiSalen) can serve as useful materials for a range of applications, including sensors, catalytic systems and energy storage devices. Although they surpass convenient conductive polymers in some aspects, they are still in the shadow of them. What pushes researchers away from NiSalen polymers is the low reproducibility of their electrochemical response, which sometimes can vary from day to day. Despite the convenient conductive polymers, which electrochemistry is often tolerant to moisture, most of the NiSalen polymers are highly water sensitive, which causes the uncertainty of their behavior, including the degradation of electrochemical activity and electrical conductance. In the present study, we demonstrate how NiSalen polymers degrade in the presence of H2O, and how the 3-substituent alternates the ultimate site of the H2O attack on the polymer. By a combination of the computational, electrochemical and spectroelectrochemical techniques, we demonstrate that the water-promoted degradation of the NiSalen polymer occurs only while it is oxidized. We have found that H2O attacks the Ni atom of the polymer, switching off charge transport along the polymer chain, but an introduction of CH3O-groups in the ligand structure changes the binding mode of H2O, protecting the polymer from degradation. © 2023 Elsevier B.V.

KW - conductive polymers

KW - degradation

KW - Polarons

KW - Electrooxidation

KW - stability

KW - Degradation

KW - Stability

KW - Conductive polymers

UR - https://www.mendeley.com/catalogue/24aa8c33-4062-335b-81f2-f7da7edfa5a0/

U2 - 10.1016/j.jelechem.2023.117310

DO - 10.1016/j.jelechem.2023.117310

M3 - Article

VL - 935

JO - Journal of Electroanalytical Chemistry

JF - Journal of Electroanalytical Chemistry

SN - 1572-6657

M1 - 117310

ER -

ID: 103843413