Standard

Uncertainty product for Vilenkin groups. / Лебедева, Елена Александровна; Ковалев, Иван.

в: International Journal of Wavelets, Multiresolution and Information Processing, Том 16, № 5, 1850036, 01.09.2018.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Лебедева, ЕА & Ковалев, И 2018, 'Uncertainty product for Vilenkin groups', International Journal of Wavelets, Multiresolution and Information Processing, Том. 16, № 5, 1850036. https://doi.org/10.1142/S0219691318500364

APA

Лебедева, Е. А., & Ковалев, И. (2018). Uncertainty product for Vilenkin groups. International Journal of Wavelets, Multiresolution and Information Processing, 16(5), [1850036]. https://doi.org/10.1142/S0219691318500364

Vancouver

Лебедева ЕА, Ковалев И. Uncertainty product for Vilenkin groups. International Journal of Wavelets, Multiresolution and Information Processing. 2018 Сент. 1;16(5). 1850036. https://doi.org/10.1142/S0219691318500364

Author

Лебедева, Елена Александровна ; Ковалев, Иван. / Uncertainty product for Vilenkin groups. в: International Journal of Wavelets, Multiresolution and Information Processing. 2018 ; Том 16, № 5.

BibTeX

@article{7f4c5774e083430d9b8e85d32879eba2,
title = "Uncertainty product for Vilenkin groups",
abstract = "We study a localization of functions defined on Vilenkin groups. To measure the localization, we introduce two uncertainty products UPλ and UPG that are similar to the Heisenberg uncertainty product. UPλ and UPG differ from each other by the metric used for the Vilenkin group G. We discuss analogs of a quantitative uncertainty principle. Representations for UPλ and UPG in terms of Walsh and Haar basis are given.",
keywords = "Haar wavelet, Vilenkin group, generalized Walsh function, modified Gibbs derivative, uncertainty product",
author = "Лебедева, {Елена Александровна} and Иван Ковалев",
note = "Funding Information: The authors are supported by Volkswagen Foundation.",
year = "2018",
month = sep,
day = "1",
doi = "10.1142/S0219691318500364",
language = "English",
volume = "16",
journal = "International Journal of Wavelets, Multiresolution and Information Processing",
issn = "0219-6913",
publisher = "WORLD SCIENTIFIC PUBL CO PTE LTD",
number = "5",

}

RIS

TY - JOUR

T1 - Uncertainty product for Vilenkin groups

AU - Лебедева, Елена Александровна

AU - Ковалев, Иван

N1 - Funding Information: The authors are supported by Volkswagen Foundation.

PY - 2018/9/1

Y1 - 2018/9/1

N2 - We study a localization of functions defined on Vilenkin groups. To measure the localization, we introduce two uncertainty products UPλ and UPG that are similar to the Heisenberg uncertainty product. UPλ and UPG differ from each other by the metric used for the Vilenkin group G. We discuss analogs of a quantitative uncertainty principle. Representations for UPλ and UPG in terms of Walsh and Haar basis are given.

AB - We study a localization of functions defined on Vilenkin groups. To measure the localization, we introduce two uncertainty products UPλ and UPG that are similar to the Heisenberg uncertainty product. UPλ and UPG differ from each other by the metric used for the Vilenkin group G. We discuss analogs of a quantitative uncertainty principle. Representations for UPλ and UPG in terms of Walsh and Haar basis are given.

KW - Haar wavelet

KW - Vilenkin group

KW - generalized Walsh function

KW - modified Gibbs derivative

KW - uncertainty product

UR - https://www.worldscientific.com/doi/10.1142/S0219691318500364

UR - http://www.scopus.com/inward/record.url?scp=85046019118&partnerID=8YFLogxK

U2 - 10.1142/S0219691318500364

DO - 10.1142/S0219691318500364

M3 - Article

VL - 16

JO - International Journal of Wavelets, Multiresolution and Information Processing

JF - International Journal of Wavelets, Multiresolution and Information Processing

SN - 0219-6913

IS - 5

M1 - 1850036

ER -

ID: 36006761