We introduce a notion of localization for functions defined on the Cantor group. Localization is characterized by the functional UCd that is similar to the Heisenberg uncertainty constant for real-line functions. We are looking for dyadic analogs of quantitative uncertainty principles. To justify our definition we use some test functions including dyadic scaling and wavelet functions.
Язык оригиналаанглийский
Число страниц12
ЖурналJournal of Mathematical Analysis and Applications
Том423
Номер выпуска2
DOI
СостояниеОпубликовано - 2015

ID: 3924843