Результаты исследований: Научные публикации в периодических изданиях › статья
Two-Loop Calculation of the Anomalous Exponents in the Kazantsev--Kraichnan Model of Magnetic Hydrodynamics. / Antonov, N.V.; Gulitskiy, N.M.
в: Lecture Notes in Computer Science, Том 7125, 2012, стр. 128-135.Результаты исследований: Научные публикации в периодических изданиях › статья
}
TY - JOUR
T1 - Two-Loop Calculation of the Anomalous Exponents in the Kazantsev--Kraichnan Model of Magnetic Hydrodynamics
AU - Antonov, N.V.
AU - Gulitskiy, N.M.
PY - 2012
Y1 - 2012
N2 - The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. Field theoretic renormalization group methods are applied to the Kazantsev-Kraichnan model of a passive vector advected by the Gaussian velocity field with zero mean and correlation function $\propto \delta(t-t')/k^{d+\epsilon}$. Inertial-range anomalous scaling for the tensor pair correlators is established as a consequence of the existence in the corresponding operator product expansions of certain "dangerous" composite operators, whose negative critical dimensions determine the anomalous exponents. The main technical result is the calculation of the anomalous exponents in the order $\epsilon^2$ of the $\epsilon$ expansion (two-loop approximation).
AB - The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. Field theoretic renormalization group methods are applied to the Kazantsev-Kraichnan model of a passive vector advected by the Gaussian velocity field with zero mean and correlation function $\propto \delta(t-t')/k^{d+\epsilon}$. Inertial-range anomalous scaling for the tensor pair correlators is established as a consequence of the existence in the corresponding operator product expansions of certain "dangerous" composite operators, whose negative critical dimensions determine the anomalous exponents. The main technical result is the calculation of the anomalous exponents in the order $\epsilon^2$ of the $\epsilon$ expansion (two-loop approximation).
U2 - 10.1007/978-3-642-2812-6_11
DO - 10.1007/978-3-642-2812-6_11
M3 - Article
VL - 7125
SP - 128
EP - 135
JO - Lecture Notes in Computer Science
JF - Lecture Notes in Computer Science
SN - 0302-9743
ER -
ID: 5114502