Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Two-Exponential Models of Gene Expression Patterns for Noisy Experimental Data. / Alexandrov, Theodore; Golyandina, Nina ; Holloway, D.; Shlemov, Alex ; Spirov, A.
в: Journal of Computational Biology, Том 25, № 11, 01.11.2018, стр. 1220–1230.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Two-Exponential Models of Gene Expression Patterns for Noisy Experimental Data
AU - Alexandrov, Theodore
AU - Golyandina, Nina
AU - Holloway, D.
AU - Shlemov, Alex
AU - Spirov, A.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Spatial pattern formation of the primary anterior-posterior morphogenetic gradient of the transcription factor Bicoid (Bcd) has been studied experimentally and computationally for many years. Bcd specifies positional information for the downstream segmentation genes, affecting the fly body plan. More recently, a number of researchers have focused on the patterning dynamics of the underlying bcd messenger RNA (mRNA) gradient, which is translated into Bcd protein. New, more accurate techniques for visualizing bcd mRNA need to be combined with quantitative signal extraction techniques to reconstruct the bcd mRNA distribution. Here, we present a robust technique for quantifying gradients with a two-exponential model. This approach (1) has natural, biologically relevant parameters and (2) is invariant to linear transformations of the data arising due to variation in experimental conditions (e.g., microscope settings, nonspecific background signal). This allows us to quantify bcd mRNA gradient variability from embryo to embryo (important for studying the robustness of developmental regulatory networks); sort out atypical gradients; and classify embryos to developmental stage by quantitative gradient parameters.
AB - Spatial pattern formation of the primary anterior-posterior morphogenetic gradient of the transcription factor Bicoid (Bcd) has been studied experimentally and computationally for many years. Bcd specifies positional information for the downstream segmentation genes, affecting the fly body plan. More recently, a number of researchers have focused on the patterning dynamics of the underlying bcd messenger RNA (mRNA) gradient, which is translated into Bcd protein. New, more accurate techniques for visualizing bcd mRNA need to be combined with quantitative signal extraction techniques to reconstruct the bcd mRNA distribution. Here, we present a robust technique for quantifying gradients with a two-exponential model. This approach (1) has natural, biologically relevant parameters and (2) is invariant to linear transformations of the data arising due to variation in experimental conditions (e.g., microscope settings, nonspecific background signal). This allows us to quantify bcd mRNA gradient variability from embryo to embryo (important for studying the robustness of developmental regulatory networks); sort out atypical gradients; and classify embryos to developmental stage by quantitative gradient parameters.
KW - Bicoid
KW - bcd mRNA gradient
KW - singular spectrum analysis
KW - spatial pattern
KW - two-exponential model
KW - DYNAMICS
KW - SIGNALS
KW - BICOID MESSENGER-RNA
KW - MORPHOGEN GRADIENT
KW - PRECISION
UR - http://www.scopus.com/inward/record.url?scp=85056321405&partnerID=8YFLogxK
UR - https://www.liebertpub.com/doi/10.1089/cmb.2017.0063
UR - http://www.mendeley.com/research/twoexponential-models-gene-expression-patterns-noisy-experimental-data
U2 - 10.1089/cmb.2017.0063
DO - 10.1089/cmb.2017.0063
M3 - Article
C2 - 30117746
VL - 25
SP - 1220
EP - 1230
JO - Journal of Computational Biology
JF - Journal of Computational Biology
SN - 1066-5277
IS - 11
ER -
ID: 35183161