Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Two constructions of oriented matroids with disconnected extension space. / Mnëv, Nicolai E.; Richter-Gebert, Jürgen.
в: Discrete and Computational Geometry, Том 10, № 1, 01.12.1993, стр. 271-285.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Two constructions of oriented matroids with disconnected extension space
AU - Mnëv, Nicolai E.
AU - Richter-Gebert, Jürgen
PY - 1993/12/1
Y1 - 1993/12/1
N2 - The extension space ℰ(ℳ) of an oriented matroid ℳ is the poset of all one-element extensions of ℳ, considered as a simplicial complex. We present two different constructions leading to rank 4 oriented matroids with disconnected extension space. We prove especially that if an element f is not contained in any mutation of a rank 4 oriented matroid ℳ, then ℰ(ℳ\f) contains an isolated point. A uniform nonrealizable arrangement of pseudoplanes with this property is presented. The examples described contrast results of Sturmfels and Ziegler [12] who proved that for rank 3 oriented matroids the extension space has the homotopy type of the 2-sphere. © 1993 Springer-Verlag New York Inc.
AB - The extension space ℰ(ℳ) of an oriented matroid ℳ is the poset of all one-element extensions of ℳ, considered as a simplicial complex. We present two different constructions leading to rank 4 oriented matroids with disconnected extension space. We prove especially that if an element f is not contained in any mutation of a rank 4 oriented matroid ℳ, then ℰ(ℳ\f) contains an isolated point. A uniform nonrealizable arrangement of pseudoplanes with this property is presented. The examples described contrast results of Sturmfels and Ziegler [12] who proved that for rank 3 oriented matroids the extension space has the homotopy type of the 2-sphere. © 1993 Springer-Verlag New York Inc.
UR - http://www.scopus.com/inward/record.url?scp=51649132245&partnerID=8YFLogxK
U2 - 10.1007/BF02573981
DO - 10.1007/BF02573981
M3 - Article
AN - SCOPUS:51649132245
VL - 10
SP - 271
EP - 285
JO - Discrete and Computational Geometry
JF - Discrete and Computational Geometry
SN - 0179-5376
IS - 1
ER -
ID: 126277385