Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Two approaches to study stress concentration and distribution in an elastic body with a nearly circular nanohole. / Vakaeva, Aleksandra B.; Shuvalov, Gleb M.; Kostyrko, Sergey A.
International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2019. ред. / Theodore E. Simos; Charalambos Tsitouras. American Institute of Physics, 2020. 360008 (AIP Conference Proceedings; Том 2293).Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Two approaches to study stress concentration and distribution in an elastic body with a nearly circular nanohole
AU - Vakaeva, Aleksandra B.
AU - Shuvalov, Gleb M.
AU - Kostyrko, Sergey A.
N1 - Funding Information: The research was supported by the Russian Science Foundation (project no. 19-71-00062). Publisher Copyright: © 2020 American Institute of Physics Inc.. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/11/24
Y1 - 2020/11/24
N2 - In this paper, we discuss two approaches to study the stress concentration and distribution around a cylindrical nanohole with undulated surface profile based on the first-order boundary perturbation technique and finite element method, respectively. To describe the effect of surface elasticity, the simplified formulation of Gurtin - Murdoch model neglecting the surface tension is used. Taking into account the plane strain conditions, the corresponding boundary value problem is formulated for a 2-D infinite domain with a nearly circular hole. The detailed numerical investigations are given to compare the first-order boundary perturbation and finite element solutions.
AB - In this paper, we discuss two approaches to study the stress concentration and distribution around a cylindrical nanohole with undulated surface profile based on the first-order boundary perturbation technique and finite element method, respectively. To describe the effect of surface elasticity, the simplified formulation of Gurtin - Murdoch model neglecting the surface tension is used. Taking into account the plane strain conditions, the corresponding boundary value problem is formulated for a 2-D infinite domain with a nearly circular hole. The detailed numerical investigations are given to compare the first-order boundary perturbation and finite element solutions.
UR - http://www.scopus.com/inward/record.url?scp=85097983617&partnerID=8YFLogxK
U2 - 10.1063/5.0026622
DO - 10.1063/5.0026622
M3 - Conference contribution
AN - SCOPUS:85097983617
T3 - AIP Conference Proceedings
BT - International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2019
A2 - Simos, Theodore E.
A2 - Tsitouras, Charalambos
PB - American Institute of Physics
T2 - International Conference on Numerical Analysis and Applied Mathematics 2019, ICNAAM 2019
Y2 - 23 September 2019 through 28 September 2019
ER -
ID: 72754552