Документы

DOI

We consider a decision-making problem to find ratings of alternatives from pairwise comparisons under several criteria, subject to constraints imposed on the ratings. Given matrices of pairwise comparisons, the problem is formulated as the log-Chebyshev approximation of these matrices by a common consistent matrix (a symmetrically reciprocal matrix of unit rank) that minimizes the approximation errors for all matrices simultaneously. We rearrange the approximation problem as a constrained multiobjective optimization problem of finding a vector that determines the approximating matrix. The optimization problem is then represented in the framework of tropical algebra. We apply methods and results of tropical optimization to solve the problem according to various principles of optimality, including the max-ordering, lexicographic ordering and lexicographic max-ordering optimality.
Язык оригиналаанглийский
Название основной публикацииInternational Conference Polynomial Computer Algebra ‘2022 (PCA 2022)
Подзаголовок основной публикацииInternational Conference Polynomial Computer Algebra '2022. St. Petersburg, May 2-7, 2022. Euler International Mathematical Institute
РедакторыN. N. Vassiliev
Место публикацииСанкт-Петербург
ИздательИздательство «ВВМ»
Страницы46-52
ISBN (печатное издание)978-5-9651-1425-2
DOI
СостояниеОпубликовано - 2022
СобытиеPolynomial Computer Algebra 2022 - Эйлеровский Институт (ЭЙМИ), Санкт-Петербург, Российская Федерация
Продолжительность: 2 мая 20227 мая 2022
https://pca-pdmi.ru/2022/program

конференция

конференцияPolynomial Computer Algebra 2022
Сокращенное названиеPCA-2022
Страна/TерриторияРоссийская Федерация
ГородСанкт-Петербург
Период2/05/227/05/22
Сайт в сети Internet

ID: 96211498