Ссылки

DOI

We consider a project that consists of a set of activities performed in parallel under constraints on their start and finish times, including start-finish precedence relationships, release start times, release end times, and deadlines. The problems of interest are to decide on the optimal schedule of the activities to minimize both the maximum flow-time over all activities, and the project makespan. We formulate these problems as bi-objective optimization problems in the framework of tropical mathematics which investigates the theory and applications of algebraic systems with idempotent operations and has various applications in management science and operations research. Then, the use of methods and techniques of tropical optimization allows to derive complete Pareto-optimal solutions of the problems in a direct explicit form ready for further analysis and straightforward computation. We discuss the computational complexity of the solution and give illustrative examples.
Язык оригиналаанглийский
Страницы (с-по)437-464
Число страниц28
ЖурналComputational Management Science
Том17
Номер выпуска3
Дата раннего онлайн-доступа17 июн 2020
DOI
СостояниеОпубликовано - окт 2020

    Предметные области Scopus

  • Теория оптимизации
  • Алгебра и теория чисел
  • Теория управления и исследование операций
  • Информационные системы
  • Информационные системы управления

ID: 60579518