DOI

We consider a class of cooperative differential games with continuous updating making use of the Pontryagin maximum principle. It is assumed that at each moment, players have or use information about the game structure defined in a closed time interval of a fixed duration. Over time, information about the game structure will be updated. The subject of the current paper is to construct players’ cooperative strategies, their cooperative trajectory, the characteristic function, and the cooperative solution for this class of differential games with continuous updating, particularly by using Pontryagin’s maximum principle as the optimality conditions. In order to demonstrate this method’s novelty, we propose to compare cooperative strategies, trajectories, characteristic functions, and corresponding Shapley values for a classic (initial) differential game and a differential game with continuous updating. Our approach provides a means of more profound modeling of conflict controlled processes. In a particular example, we demonstrate that players’ behavior is braver at the beginning of the game with continuous updating because they lack the information for the whole game, and they are “intrinsically time-inconsistent”. In contrast, in the initial model, the players are more cautious, which implies they dare not emit too much pollution at first.

Язык оригиналаанглийский
Номер статьи163
Страницы (с-по)1-22
Число страниц22
ЖурналMathematics
Том9
Номер выпуска2
DOI
СостояниеОпубликовано - 14 янв 2021

    Предметные области Scopus

  • Математика (все)

ID: 73588126