Standard

Towards the reverse decomposition of unipotents. / Vavilov, N. A. .

в: Записки научных семинаров ПОМИ, Том 470, 2018, стр. 21-37.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Vavilov, NA 2018, 'Towards the reverse decomposition of unipotents', Записки научных семинаров ПОМИ, Том. 470, стр. 21-37. <http://www.pdmi.ras.ru/znsl/2018/v470.html>

APA

Vavilov, N. A. (2018). Towards the reverse decomposition of unipotents. Записки научных семинаров ПОМИ, 470, 21-37. http://www.pdmi.ras.ru/znsl/2018/v470.html

Vancouver

Vavilov NA. Towards the reverse decomposition of unipotents. Записки научных семинаров ПОМИ. 2018;470:21-37.

Author

Vavilov, N. A. . / Towards the reverse decomposition of unipotents. в: Записки научных семинаров ПОМИ. 2018 ; Том 470. стр. 21-37.

BibTeX

@article{9e7f097a7c6c42ae91a33f9641098c0c,
title = "Towards the reverse decomposition of unipotents",
abstract = "Decomposition of unipotents gives short polynomial expressions of the conjugates of elementary generators as products of elementaries. It turns out that with some minor twist the decomposition of unipotents can be read backwards to give very short polynomial expressions of the elementary generators themselves in terms of elementary conjugates of an arbitrary matrix and its inverse. For absolute elementary subgroups of classical groups this was recently observed by Raimund Preusser. I discuss various generalizations of these results for exceptional groups, specificallythose of types E6 and E7, and also mention further possible generalizations and applications.",
keywords = "классические группы, группы Шеваллем, нормальная структура, элементарные подгруппы, разлоение унипотентов, обратное разложение унипотентов",
author = "Vavilov, {N. A.}",
note = "N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 21–37; J. Math. Sci. (N. Y.), 243:4 (2019), 515–526",
year = "2018",
language = "English",
volume = "470",
pages = "21--37",
journal = "ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН",
issn = "0373-2703",
publisher = "Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН",

}

RIS

TY - JOUR

T1 - Towards the reverse decomposition of unipotents

AU - Vavilov, N. A.

N1 - N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Вопросы теории представлений алгебр и групп. 33, Зап. научн. сем. ПОМИ, 470, ПОМИ, СПб., 2018, 21–37; J. Math. Sci. (N. Y.), 243:4 (2019), 515–526

PY - 2018

Y1 - 2018

N2 - Decomposition of unipotents gives short polynomial expressions of the conjugates of elementary generators as products of elementaries. It turns out that with some minor twist the decomposition of unipotents can be read backwards to give very short polynomial expressions of the elementary generators themselves in terms of elementary conjugates of an arbitrary matrix and its inverse. For absolute elementary subgroups of classical groups this was recently observed by Raimund Preusser. I discuss various generalizations of these results for exceptional groups, specificallythose of types E6 and E7, and also mention further possible generalizations and applications.

AB - Decomposition of unipotents gives short polynomial expressions of the conjugates of elementary generators as products of elementaries. It turns out that with some minor twist the decomposition of unipotents can be read backwards to give very short polynomial expressions of the elementary generators themselves in terms of elementary conjugates of an arbitrary matrix and its inverse. For absolute elementary subgroups of classical groups this was recently observed by Raimund Preusser. I discuss various generalizations of these results for exceptional groups, specificallythose of types E6 and E7, and also mention further possible generalizations and applications.

KW - классические группы

KW - группы Шеваллем

KW - нормальная структура

KW - элементарные подгруппы

KW - разлоение унипотентов

KW - обратное разложение унипотентов

UR - http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=6609&option_lang=rus

M3 - Article

VL - 470

SP - 21

EP - 37

JO - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

JF - ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН

SN - 0373-2703

ER -

ID: 51602114