DOI

Abstract: Generalized Honda formal groups are a class of formal groups, which includes all formal groups over the ring of integers of local fields weakly ramified over Qp. This class is the next in the chain multiplicative formal group–Lubin-Tate formal groups–Honda formal groups. The Lubin-Tate formal groups are defined by distinguished endomorphisms [π]F. Honda formal groups have distinguished homomorphisms that factor through [π]F. In this article, we prove that for generalized Honda formal groups, the composition of a sequence of distinguished homomorphisms factors through [π]F. As an application of this fact, a number of properties of πn-torsion points of the generalized Honda formal group are proved.

Язык оригиналаанглийский
Страницы (с-по)404-411
Число страниц8
ЖурналVestnik St. Petersburg University: Mathematics
Том53
Номер выпуска4
DOI
СостояниеОпубликовано - окт 2020

    Предметные области Scopus

  • Математика (все)

ID: 88387537