Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Abstract: Generalized Honda formal groups are a class of formal groups, which includes all formal groups over the ring of integers of local fields weakly ramified over Qp. This class is the next in the chain multiplicative formal group–Lubin-Tate formal groups–Honda formal groups. The Lubin-Tate formal groups are defined by distinguished endomorphisms [π]F. Honda formal groups have distinguished homomorphisms that factor through [π]F. In this article, we prove that for generalized Honda formal groups, the composition of a sequence of distinguished homomorphisms factors through [π]F. As an application of this fact, a number of properties of πn-torsion points of the generalized Honda formal group are proved.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 404-411 |
Число страниц | 8 |
Журнал | Vestnik St. Petersburg University: Mathematics |
Том | 53 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - окт 2020 |
ID: 88387537