Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case. / Naboko, S. N. ; Simonov, S. A.
в: Functional Analysis and its Applications, Том 55, № 2, 04.2021, стр. 94-112.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case
AU - Naboko, S. N.
AU - Simonov, S. A.
N1 - Publisher Copyright: © 2021, Pleiades Publishing, Ltd.
PY - 2021/4
Y1 - 2021/4
N2 - We consider a class of Jacobi matrices with unbounded entries in the so-called critical (double root, Jordan block) case. We prove a formula which relates the spectral density of a matrix to the asymptotics of orthogonal polynomials associated with it.
AB - We consider a class of Jacobi matrices with unbounded entries in the so-called critical (double root, Jordan block) case. We prove a formula which relates the spectral density of a matrix to the asymptotics of orthogonal polynomials associated with it.
KW - Jacobi matrix
KW - Levinson theorem
KW - Titchmarsh–Weyl theory
KW - asymptotics
KW - generalized eigenvector
KW - orthogonal polynomials
KW - spectral density
KW - PERTURBATIONS
KW - SUBORDINACY
KW - GENERALIZED EIGENVECTORS
KW - Titchmarsh-Weyl theory
KW - ASYMPTOTICS
KW - ORTHOGONAL POLYNOMIALS
KW - ABSOLUTELY CONTINUOUS-SPECTRUM
KW - PERIODIC SCHRODINGER OPERATOR
KW - ZEROS
UR - http://www.scopus.com/inward/record.url?scp=85118785507&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/34ec04e1-5c00-37d2-9b4d-c51a64658893/
U2 - 10.1134/S0016266321020027
DO - 10.1134/S0016266321020027
M3 - Article
VL - 55
SP - 94
EP - 112
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 2
ER -
ID: 88238247