Standard

Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case. / Naboko, S. N. ; Simonov, S. A.

в: Functional Analysis and its Applications, Том 55, № 2, 04.2021, стр. 94-112.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Naboko, S. N. ; Simonov, S. A. / Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case. в: Functional Analysis and its Applications. 2021 ; Том 55, № 2. стр. 94-112.

BibTeX

@article{24c3e348693344a889dfb5ec9cfe672a,
title = "Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case",
abstract = "We consider a class of Jacobi matrices with unbounded entries in the so-called critical (double root, Jordan block) case. We prove a formula which relates the spectral density of a matrix to the asymptotics of orthogonal polynomials associated with it.",
keywords = "Jacobi matrix, Levinson theorem, Titchmarsh–Weyl theory, asymptotics, generalized eigenvector, orthogonal polynomials, spectral density, PERTURBATIONS, SUBORDINACY, GENERALIZED EIGENVECTORS, Titchmarsh-Weyl theory, ASYMPTOTICS, ORTHOGONAL POLYNOMIALS, ABSOLUTELY CONTINUOUS-SPECTRUM, PERIODIC SCHRODINGER OPERATOR, ZEROS",
author = "Naboko, {S. N.} and Simonov, {S. A.}",
note = "Publisher Copyright: {\textcopyright} 2021, Pleiades Publishing, Ltd.",
year = "2021",
month = apr,
doi = "10.1134/S0016266321020027",
language = "English",
volume = "55",
pages = "94--112",
journal = "Functional Analysis and its Applications",
issn = "0016-2663",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case

AU - Naboko, S. N.

AU - Simonov, S. A.

N1 - Publisher Copyright: © 2021, Pleiades Publishing, Ltd.

PY - 2021/4

Y1 - 2021/4

N2 - We consider a class of Jacobi matrices with unbounded entries in the so-called critical (double root, Jordan block) case. We prove a formula which relates the spectral density of a matrix to the asymptotics of orthogonal polynomials associated with it.

AB - We consider a class of Jacobi matrices with unbounded entries in the so-called critical (double root, Jordan block) case. We prove a formula which relates the spectral density of a matrix to the asymptotics of orthogonal polynomials associated with it.

KW - Jacobi matrix

KW - Levinson theorem

KW - Titchmarsh–Weyl theory

KW - asymptotics

KW - generalized eigenvector

KW - orthogonal polynomials

KW - spectral density

KW - PERTURBATIONS

KW - SUBORDINACY

KW - GENERALIZED EIGENVECTORS

KW - Titchmarsh-Weyl theory

KW - ASYMPTOTICS

KW - ORTHOGONAL POLYNOMIALS

KW - ABSOLUTELY CONTINUOUS-SPECTRUM

KW - PERIODIC SCHRODINGER OPERATOR

KW - ZEROS

UR - http://www.scopus.com/inward/record.url?scp=85118785507&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/34ec04e1-5c00-37d2-9b4d-c51a64658893/

U2 - 10.1134/S0016266321020027

DO - 10.1134/S0016266321020027

M3 - Article

VL - 55

SP - 94

EP - 112

JO - Functional Analysis and its Applications

JF - Functional Analysis and its Applications

SN - 0016-2663

IS - 2

ER -

ID: 88238247