Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Time-Varying Efficiency and Predictability in Cryptocurrency Markets: Forward-Looking Dynamics. / Рогова, Елена Моисеевна; Вукович, Дарко; Зиновьев, Вячеслав Андреевич; Shakib, Mohammed ; Hassan, Kabir M.
в: International Journal of Finance and Economics, 11.08.2025.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Time-Varying Efficiency and Predictability in Cryptocurrency Markets: Forward-Looking Dynamics
AU - Рогова, Елена Моисеевна
AU - Вукович, Дарко
AU - Зиновьев, Вячеслав Андреевич
AU - Shakib, Mohammed
AU - Hassan, Kabir M.
PY - 2025/8/11
Y1 - 2025/8/11
N2 - This study investigates the time-varying efficiency of major cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC) and XRP—within the framework of the adaptive market hypothesis (AMH). We introduce a forward-looking method by integrating predicted data into the Dominguez–Lobato (DL) and generalised spectral (GS) testing frameworks as part of Martingale Difference Theory (MDT). Our strategy allows us to forecast potential future inefficiencies in the market, advancing the traditional retrospective analyses (based on historical perspective) prevalent in the literature. We employ and test forecasted data to identify potential future shifts in market efficiency, as an extension of the Martingale difference hypothesis (MDH). The results indicate that cryptocurrency markets do not maintain a static level of efficiency but adapt over time, with varying degrees of predictability and inefficiency. The random forest (RF) model demonstrates the ability to forecast breaks in market efficiency.
AB - This study investigates the time-varying efficiency of major cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC) and XRP—within the framework of the adaptive market hypothesis (AMH). We introduce a forward-looking method by integrating predicted data into the Dominguez–Lobato (DL) and generalised spectral (GS) testing frameworks as part of Martingale Difference Theory (MDT). Our strategy allows us to forecast potential future inefficiencies in the market, advancing the traditional retrospective analyses (based on historical perspective) prevalent in the literature. We employ and test forecasted data to identify potential future shifts in market efficiency, as an extension of the Martingale difference hypothesis (MDH). The results indicate that cryptocurrency markets do not maintain a static level of efficiency but adapt over time, with varying degrees of predictability and inefficiency. The random forest (RF) model demonstrates the ability to forecast breaks in market efficiency.
KW - гипотеза адаптивного рынка
KW - криптовалютный рынок
KW - случайный лес
KW - случайное блуждание
KW - разность мартингалов
KW - adaptive market hypothesis
KW - cryptocurrencies
KW - martingale difference hypothesis
KW - random forest
KW - random walk
UR - https://onlinelibrary.wiley.com/doi/10.1002/ijfe.70039
UR - https://www.mendeley.com/catalogue/3c009051-3637-3aba-aab4-425a9d46f8fb/
U2 - 10.1002/ijfe.70039
DO - 10.1002/ijfe.70039
M3 - Article
JO - International Journal of Finance and Economics
JF - International Journal of Finance and Economics
SN - 1076-9307
M1 - 70039
ER -
ID: 139657810