Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Using an example a system of two coupled generators of quasi-periodic oscillations, we study the occurrence of chaotic dynamics with one positive, two zero, and several negative Lyapunov exponents. It is shown that such dynamic arises as a result of a sequence of bifurcations of two-frequency torus doubling and involves saddle tori occurring at their doublings. This transition is associated with typical structure of parameter plane, like cross-road area and shrimp-shaped structures, based on the two-frequency quasi-periodic dynamics. Using double Poincare section, we have shown destruction of three-frequency torus.
| Язык оригинала | английский |
|---|---|
| Номер статьи | 111001 |
| Журнал | Journal of Computational and Nonlinear Dynamics |
| Том | 15 |
| Номер выпуска | 11 |
| DOI | |
| Состояние | Опубликовано - ноя 2020 |
ID: 86483395