Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A special spine of a 3-manifold is said to be poor if it does not contain proper simple subpolyhedra. Using the Turaev-Viro invariants, we establish that every compact 3-manifold M with connected nonempty boundary has a finite number of poor special spines. Moreover, all poor special spines of the manifold M have the same number of true vertices. We prove that the complexity of a compact hyperbolic 3-manifold with totally geodesic boundary that has a poor special spine with two 2-components and n true vertices is equal to n. Such manifolds are constructed for infinitely many values of n.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 29-38 |
| Число страниц | 10 |
| Журнал | Proceedings of the Steklov Institute of Mathematics |
| Том | 288 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - 1 янв 2015 |
ID: 40113221