A nonlinear operator generated by a fixed function of two real variables is considered. The function is supposed to be smooth, the first argument is defined on a closed interval, the second one on the real line. We also assume that this function to be both strictly increasing and bilipshitz by the second argument. The operator acts on the space of all infinitely differentiable real functions defined on the same closed interval as the first argument of the fixed function, and assigns to any such a function the result of the substitution of its derivative instead of the second argument in the fixed function of two variables. For any trajectory of the discrete infinite dimensional dynamical system (which is chaotic in general case) generated by the operator we prove the following properties: a trajectory of the system is uniformly bounded iff it is pointwise bounded ; a trajectory is uniformly convergent with all its derivatives iff it is pointwise convergent; the least pointwise upper bound of the trajectory is also the greatest lower bound of an other trajectory of the system iff it is a fixed point of this system. The last statement gives serial characteristics of fixed points of the operator, which is not monotonous.

Язык оригиналаанглийский
Страницы (с-по)104-108
Число страниц5
ЖурналДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ
Том2019
Номер выпуска1
СостояниеОпубликовано - 1 янв 2019

    Предметные области Scopus

  • Анализ
  • Прикладная математика
  • Теория оптимизации
  • Прикладные компьютерные науки
  • Информационные системы
  • Программный продукт

ID: 50053095