Ссылки

DOI

The development of sustainable nanofiltration membranes requires alternatives to petroleum-derived polymer substrates. This study demonstrates the successful use of an eco-friendly cellulose acetate/cellulose nitrate (CA/CN) blend substrate for fabricating high-performance modified thin-film composite (mTFC) membranes. A dense, non-porous polyamide (PA) selective layer was formed via the interfacial polymerization method and modified with 0.05-0.1 wt.% HKUST-1 (Cu 3BTC 2 , MOF-199). Characterization by FTIR, XPS, SEM, AFM, and contact angle measurements confirmed the CA/CN substrate's suitability for TFC membrane fabrication. HKUST-1 incorporation created a distinctive ridge-and-valley morphology while significantly altering PA layer hydrophilicity and roughness. The mTFC membrane performance could be fine-tuned by the controlled incorporation of HKUST-1; incorporation through the aqueous phase slowed down the formation of the PA layer and significantly reduced its thickness, while the addition through the organic phase resulted in the formation of a denser layer due to HKUST-1 agglomeration. Thus, either enhanced permeability (123 LMH bar -1 with 0.05 wt.% aqueous-phase incorporation) or rejection (>89% dye removal with 0.05 wt.% organic-phase incorporation) were achieved. Both mTFC membranes also exhibited improved heavy metal ion rejection (>91.7%), confirming their industrial potential. Higher HKUST-1 loading (0.1 wt.%) caused MOF agglomeration, reducing performance. This approach establishes a sustainable fabrication route for tunable TFC membranes targeting specific separation tasks.

Язык оригиналаанглийский
Номер статьи1137
Число страниц23
ЖурналPolymers
Том17
Номер выпуска9
DOI
СостояниеОпубликовано - 22 апр 2025

ID: 135055245