Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
The structural origin and boundaries of thermal transitions in stillwellite-type LnBSiO5. / Кржижановская, Мария Георгиевна; Верещагин, Олег Сергеевич; Копылова, Юлия Олеговна; Горелова, Людмила Александровна; Панькин, Дмитрий Васильевич; Юхно, Валентина Анатольевна; Власенко, Наталия Сергеевна; Бочаров, Владимир Николаевич; Бритвин, Сергей Николаевич.
в: Optical Materials, Том 147, 114651, 01.01.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - The structural origin and boundaries of thermal transitions in stillwellite-type LnBSiO5
AU - Кржижановская, Мария Георгиевна
AU - Верещагин, Олег Сергеевич
AU - Копылова, Юлия Олеговна
AU - Горелова, Людмила Александровна
AU - Панькин, Дмитрий Васильевич
AU - Юхно, Валентина Анатольевна
AU - Власенко, Наталия Сергеевна
AU - Бочаров, Владимир Николаевич
AU - Бритвин, Сергей Николаевич
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Stillwellite-type borosilicates, LnBSiO5 represent a family of promising non-linear optical materials. The incorporation of different rare earths into the Ln sites results in complicate patterns of phase transitions. We herein analyze the high-temperature (HT) structural transformations of LnBSiO5 (Ln = Nd, Ce, La) using a suite of in situ HT methods: single-crystal structural study, powder X-ray diffraction and Raman spectroscopy, accompanied by thermal analysis. It is shown that phase transitions between the low- and high-temperature polymorphs of LnBSiO5 originate from the order-disorder in borate chains and are greatly dependent on the nature of the rare earth in the Ln sites. We showed that the high-temperature polymorphs of LnBSiO5 (Ln = Nd, Ce, La) are always metastable at ambient conditions, regardless of lanthanide cation type.
AB - Stillwellite-type borosilicates, LnBSiO5 represent a family of promising non-linear optical materials. The incorporation of different rare earths into the Ln sites results in complicate patterns of phase transitions. We herein analyze the high-temperature (HT) structural transformations of LnBSiO5 (Ln = Nd, Ce, La) using a suite of in situ HT methods: single-crystal structural study, powder X-ray diffraction and Raman spectroscopy, accompanied by thermal analysis. It is shown that phase transitions between the low- and high-temperature polymorphs of LnBSiO5 originate from the order-disorder in borate chains and are greatly dependent on the nature of the rare earth in the Ln sites. We showed that the high-temperature polymorphs of LnBSiO5 (Ln = Nd, Ce, La) are always metastable at ambient conditions, regardless of lanthanide cation type.
KW - Borosilicate
KW - Borate
KW - Stillwellite
KW - LaBSiO5
KW - NdBSiO5
KW - Phase transition
KW - Negative thermal expansion
KW - Non-linear optical materials
KW - Borate
KW - Borosilicate
KW - LaBSiO5
KW - NdBSiO5
KW - Negative thermal expansion
KW - Non-linear optical materials
KW - Phase transition
KW - Stillwellite
UR - https://www.mendeley.com/catalogue/bb8ddc39-ac12-35d0-beeb-bf114066c828/
U2 - 10.1016/j.optmat.2023.114651
DO - 10.1016/j.optmat.2023.114651
M3 - Article
VL - 147
JO - Optical Materials
JF - Optical Materials
SN - 0925-3467
M1 - 114651
ER -
ID: 115588005