Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная
The skew-symmetric pairing on the lubin–tate formal module. / Ivanov, M.A.; Vostokov, S.V.
Arithmetic and Geometry. 2015. стр. 255-263.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › глава/раздел › научная
}
TY - CHAP
T1 - The skew-symmetric pairing on the lubin–tate formal module
AU - Ivanov, M.A.
AU - Vostokov, S.V.
PY - 2015
Y1 - 2015
N2 - © Cambridge University Press 2015. The classical Hilbert symbol determines a skew-symmetric pairing on the multiplicative group of a local field. Explicit formulae for the Hilbert symbol were obtained independently by Brückner ([3]) and Vostokov ([2]) in 1978. Subsequently, these formulae were generalized to multi-dimensional local fields (see [7]). In this note, we shall generalize these results to the formal modules. Let F be a commutative formal group over the ring of integers of a local field k; let k0 ∩ k be the subfield such that is the endomorphism ring of F. Let k′|k be a finite extension and let, where π is a prime element of k′. Our goal is to construct a skew-symmetric bilinear pairing (α, β): F(M) × F(M) → ker[πn]F.
AB - © Cambridge University Press 2015. The classical Hilbert symbol determines a skew-symmetric pairing on the multiplicative group of a local field. Explicit formulae for the Hilbert symbol were obtained independently by Brückner ([3]) and Vostokov ([2]) in 1978. Subsequently, these formulae were generalized to multi-dimensional local fields (see [7]). In this note, we shall generalize these results to the formal modules. Let F be a commutative formal group over the ring of integers of a local field k; let k0 ∩ k be the subfield such that is the endomorphism ring of F. Let k′|k be a finite extension and let, where π is a prime element of k′. Our goal is to construct a skew-symmetric bilinear pairing (α, β): F(M) × F(M) → ker[πn]F.
U2 - 10.1017/CBO9781316106877.015
DO - 10.1017/CBO9781316106877.015
M3 - Chapter
SN - 9781316106877; 9781107462540
SP - 255
EP - 263
BT - Arithmetic and Geometry
ER -
ID: 3986939