Standard

The signature theorem and some related questions. / Netsvetaev, N. Yu.

в: Journal of Mathematical Sciences , Том 91, № 6, 1998, стр. 3460-3468.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Netsvetaev, NY 1998, 'The signature theorem and some related questions', Journal of Mathematical Sciences , Том. 91, № 6, стр. 3460-3468. https://doi.org/10.1007/BF02434923

APA

Vancouver

Author

Netsvetaev, N. Yu. / The signature theorem and some related questions. в: Journal of Mathematical Sciences . 1998 ; Том 91, № 6. стр. 3460-3468.

BibTeX

@article{f72861361ebb453198d48d8351d5fe63,
title = "The signature theorem and some related questions",
abstract = "Some corollaries of the Hirzebruch-Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of ℚ-homology manifolds is proved. A geometric proof of Hirzebruch's well-known {"}functional equation{"} for the virtual signature is outlined.",
author = "Netsvetaev, {N. Yu}",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "1998",
doi = "10.1007/BF02434923",
language = "English",
volume = "91",
pages = "3460--3468",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - The signature theorem and some related questions

AU - Netsvetaev, N. Yu

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 1998

Y1 - 1998

N2 - Some corollaries of the Hirzebruch-Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of ℚ-homology manifolds is proved. A geometric proof of Hirzebruch's well-known "functional equation" for the virtual signature is outlined.

AB - Some corollaries of the Hirzebruch-Thom signature theorem are discussed. The multiplicativity of the signature and the naturalness of the Pontryagin classes for coverings in the case of ℚ-homology manifolds is proved. A geometric proof of Hirzebruch's well-known "functional equation" for the virtual signature is outlined.

UR - http://www.scopus.com/inward/record.url?scp=54749132710&partnerID=8YFLogxK

U2 - 10.1007/BF02434923

DO - 10.1007/BF02434923

M3 - Article

AN - SCOPUS:54749132710

VL - 91

SP - 3460

EP - 3468

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 75602919