DOI

Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s to understand the power of Gröbner basis computations, linear and semidefinite programming hierarchies, and other methods. Such proof systems are defined alternately with only the original variables of the problem and with special formal variables for positive and negative literals, but there seems to have been no study how these different definitions affect the power of the proof systems. We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding formal variables for negative literals makes the proof systems exponentially stronger, with respect to the number of terms in the proofs. These separations are witnessed by CNF formulas that are easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares cannot efficiently simulate resolution without having access to variables for negative literals.

Язык оригиналаанглийский
Название основной публикации36th Computational Complexity Conference, CCC 2021
РедакторыValentine Kabanets
ИздательSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Число страниц24
ISBN (электронное издание)9783959771931
ISBN (печатное издание)9783959771931
DOI
СостояниеОпубликовано - 1 июл 2021
Событие36th Computational Complexity Conference, CCC 2021 - Virtual, Toronto, Канада
Продолжительность: 20 июл 202123 июл 2021

Серия публикаций

НазваниеLeibniz International Proceedings in Informatics, LIPIcs
Том200
ISSN (печатное издание)1868-8969

конференция

конференция36th Computational Complexity Conference, CCC 2021
Страна/TерриторияКанада
ГородVirtual, Toronto
Период20/07/2123/07/21

    Предметные области Scopus

  • Программный продукт

ID: 87790148