Standard

The Poisson bracket compatible with the classical reflection equation algebra. / Tsiganov, A. V.

в: Regular and Chaotic Dynamics, Том 13, № 3, 06.2008, стр. 191-203.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Tsiganov, A. V. / The Poisson bracket compatible with the classical reflection equation algebra. в: Regular and Chaotic Dynamics. 2008 ; Том 13, № 3. стр. 191-203.

BibTeX

@article{ff0b4f481435450bae1e2db64a365b2b,
title = "The Poisson bracket compatible with the classical reflection equation algebra",
abstract = "We introduce a family of compatible Poisson brackets on the space of 2 × 2 polynomial matrices, which contains the reflection equation algebra bracket. Then we use it to derive a multi-Hamiltonian structure for a set of integrable systems that includes the X X X Heisenberg magnet with boundary conditions, the generalized Toda lattices and the Kowalevski top.",
keywords = "Bi-hamiltonian structure, Poisson bracket, Refection equation algebra",
author = "Tsiganov, {A. V.}",
year = "2008",
month = jun,
doi = "10.1134/S1560354708030052",
language = "English",
volume = "13",
pages = "191--203",
journal = "Regular and Chaotic Dynamics",
issn = "1560-3547",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "3",

}

RIS

TY - JOUR

T1 - The Poisson bracket compatible with the classical reflection equation algebra

AU - Tsiganov, A. V.

PY - 2008/6

Y1 - 2008/6

N2 - We introduce a family of compatible Poisson brackets on the space of 2 × 2 polynomial matrices, which contains the reflection equation algebra bracket. Then we use it to derive a multi-Hamiltonian structure for a set of integrable systems that includes the X X X Heisenberg magnet with boundary conditions, the generalized Toda lattices and the Kowalevski top.

AB - We introduce a family of compatible Poisson brackets on the space of 2 × 2 polynomial matrices, which contains the reflection equation algebra bracket. Then we use it to derive a multi-Hamiltonian structure for a set of integrable systems that includes the X X X Heisenberg magnet with boundary conditions, the generalized Toda lattices and the Kowalevski top.

KW - Bi-hamiltonian structure

KW - Poisson bracket

KW - Refection equation algebra

UR - http://www.scopus.com/inward/record.url?scp=45349089715&partnerID=8YFLogxK

U2 - 10.1134/S1560354708030052

DO - 10.1134/S1560354708030052

M3 - Article

AN - SCOPUS:45349089715

VL - 13

SP - 191

EP - 203

JO - Regular and Chaotic Dynamics

JF - Regular and Chaotic Dynamics

SN - 1560-3547

IS - 3

ER -

ID: 8484340