DOI

We studied a suite of Cullinan diamonds (<0.3 ct) with mineral inclusions, which comprised 266 Type I and 75 blank Type II (<20 ppm N) diamonds, as classified by infrared spectroscopy. More than 90% (n = 68) of Type II diamonds do not luminesce. In contrast, 51.9% (n = 177) of Type I diamonds luminesce, with blue colors of different intensity. Carbon isotopic compositions of Type I and II diamonds are similar, with δ13CVPDB ranging from −2.1 to −7.7‰ for Type I diamonds (n = 25), and from −1.3 to −7.8‰ for Type II diamonds (n = 20). The Type II diamonds are sourced from three parageneses, lithospheric lherzolitic (45%), lithospheric eclogitic (33%), and sublithospheric mafic (22%). The lherzolitic suite contains Cr-pyrope, forsterite, enstatite, clinopyroxene and Cr-spinel formed at 1090–1530 °C and P = 4.6–7.0 GPa. Lithospheric eclogitic diamonds containing garnet, omphacite, kyanite and coesite comprise 33% of Type II diamonds. The sublithospheric mafic paragenesis is mainly represented by Cr-free majorite, various CaSiO3 phases and omphacite equilibrated at 11.6–26 GPa, in the transition zone and the lower mantle. The lherzolitic paragenesis predominates in Type II diamonds, whereas 79% Type I diamonds are sourced from eclogites. The higher incidence of sublithospheric inclusions was found in Type II diamonds, 22% against 6% in Type I diamonds. The similarity of the mineral parageneses and C isotopic compositions in the small Cullinan Type II and Type I diamonds indicate the absence of distinct mantle processes and carbon sources for formation of studied Type II diamonds. The parent rocks and the carbon sources generally vary for Type II diamonds within a kimberlite and between kimberlites.

Язык оригиналаанглийский
Страницы (с-по)275-289
Число страниц15
ЖурналMineralogy and Petrology
Том112
DOI
СостояниеОпубликовано - дек 2018
Опубликовано для внешнего пользованияДа

    Предметные области Scopus

  • Геохимия и петрология
  • Геофизика

ID: 36111220