Standard

The Neumann Problem for the Generalized Hénon Equation. / Shcheglova, A. P.

в: Journal of Mathematical Sciences (United States), Том 235, № 3, 01.12.2018, стр. 360-373.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Shcheglova, AP 2018, 'The Neumann Problem for the Generalized Hénon Equation', Journal of Mathematical Sciences (United States), Том. 235, № 3, стр. 360-373. https://doi.org/10.1007/s10958-018-4078-4

APA

Shcheglova, A. P. (2018). The Neumann Problem for the Generalized Hénon Equation. Journal of Mathematical Sciences (United States), 235(3), 360-373. https://doi.org/10.1007/s10958-018-4078-4

Vancouver

Shcheglova AP. The Neumann Problem for the Generalized Hénon Equation. Journal of Mathematical Sciences (United States). 2018 Дек. 1;235(3):360-373. https://doi.org/10.1007/s10958-018-4078-4

Author

Shcheglova, A. P. / The Neumann Problem for the Generalized Hénon Equation. в: Journal of Mathematical Sciences (United States). 2018 ; Том 235, № 3. стр. 360-373.

BibTeX

@article{17ab3aea332240619935c259ea7d9a36,
title = "The Neumann Problem for the Generalized H{\'e}non Equation",
abstract = "We study the behavior of radial solutions to the boundary value problem−Δpu+up−1=|x|auq−1inB,∂u∂n=0on∂B,q>p, in the unit ball B and prove the existence of nonradial positive solutions for some values of parameters. We obtain multiplicity results which are new even in the case p = 2.",
author = "Shcheglova, {A. P.}",
year = "2018",
month = dec,
day = "1",
doi = "10.1007/s10958-018-4078-4",
language = "English",
volume = "235",
pages = "360--373",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - The Neumann Problem for the Generalized Hénon Equation

AU - Shcheglova, A. P.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We study the behavior of radial solutions to the boundary value problem−Δpu+up−1=|x|auq−1inB,∂u∂n=0on∂B,q>p, in the unit ball B and prove the existence of nonradial positive solutions for some values of parameters. We obtain multiplicity results which are new even in the case p = 2.

AB - We study the behavior of radial solutions to the boundary value problem−Δpu+up−1=|x|auq−1inB,∂u∂n=0on∂B,q>p, in the unit ball B and prove the existence of nonradial positive solutions for some values of parameters. We obtain multiplicity results which are new even in the case p = 2.

UR - http://www.scopus.com/inward/record.url?scp=85054650980&partnerID=8YFLogxK

U2 - 10.1007/s10958-018-4078-4

DO - 10.1007/s10958-018-4078-4

M3 - Article

AN - SCOPUS:85054650980

VL - 235

SP - 360

EP - 373

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 3

ER -

ID: 115494480