Standard

The maupertuis principle and canonical transformations of the extended phase space. / Tsiganov, A. V.

в: Journal of Nonlinear Mathematical Physics, Том 8, № 1, 2001, стр. 157-182.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Tsiganov, A. V. / The maupertuis principle and canonical transformations of the extended phase space. в: Journal of Nonlinear Mathematical Physics. 2001 ; Том 8, № 1. стр. 157-182.

BibTeX

@article{a0a8ef5e0b4a4b598e8f4a5e5fcb2310,
title = "The maupertuis principle and canonical transformations of the extended phase space",
abstract = "We discuss some special classes of canonical transformations of the extended phase space, which relate integrable systems with a common Lagrangian submanifold. Various parametric forms of trajectories are associated with different integrals of motion, Lax equations, separated variables and action-angles variables. In this review we will discuss namely these induced transformations instead of the various parametric form of the geometric objects.",
author = "Tsiganov, {A. V.}",
year = "2001",
doi = "10.2991/jnmp.2001.8.1.12",
language = "English",
volume = "8",
pages = "157--182",
journal = "Journal of Nonlinear Mathematical Physics",
issn = "1402-9251",
publisher = "Taylor & Francis",
number = "1",

}

RIS

TY - JOUR

T1 - The maupertuis principle and canonical transformations of the extended phase space

AU - Tsiganov, A. V.

PY - 2001

Y1 - 2001

N2 - We discuss some special classes of canonical transformations of the extended phase space, which relate integrable systems with a common Lagrangian submanifold. Various parametric forms of trajectories are associated with different integrals of motion, Lax equations, separated variables and action-angles variables. In this review we will discuss namely these induced transformations instead of the various parametric form of the geometric objects.

AB - We discuss some special classes of canonical transformations of the extended phase space, which relate integrable systems with a common Lagrangian submanifold. Various parametric forms of trajectories are associated with different integrals of motion, Lax equations, separated variables and action-angles variables. In this review we will discuss namely these induced transformations instead of the various parametric form of the geometric objects.

UR - http://www.scopus.com/inward/record.url?scp=0035585784&partnerID=8YFLogxK

U2 - 10.2991/jnmp.2001.8.1.12

DO - 10.2991/jnmp.2001.8.1.12

M3 - Article

AN - SCOPUS:0035585784

VL - 8

SP - 157

EP - 182

JO - Journal of Nonlinear Mathematical Physics

JF - Journal of Nonlinear Mathematical Physics

SN - 1402-9251

IS - 1

ER -

ID: 8483779