Standard

The local state of hydrogen atoms and proton transfer in the crystal structure of natural berborite, Be2(BO3)(OH)‧H2O: Low-temperature single crystal X-ray analysis, IR and 1H NMR spectroscopy, and crystal chemistry and structural complexity of beryllium borates. / Aksenov, S.M.; Chukanov, N.V.; Tarasov, V.P.; Banaru, D.A.; Mackley, S.A.; Banaru, A.M.; Krivovichev, S.V.; Burns, P.C.

в: Journal of Physics and Chemistry of Solids, Том 189, 111944, 01.06.2024.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{ddb9eab0728f453fb9f0d520aaca4093,
title = "The local state of hydrogen atoms and proton transfer in the crystal structure of natural berborite, Be2(BO3)(OH)‧H2O: Low-temperature single crystal X-ray analysis, IR and 1H NMR spectroscopy, and crystal chemistry and structural complexity of beryllium borates",
abstract = "Beryllium borates are mostly water-free, with the natural mineral berborite, Be2(BO3)(OH)‧H2O, being the only known exception. A sample of berborite from the Vevja quarry, Tvedalen, Larvik, Norway was studied by single-crystal X-ray diffraction, variable temperature 1H nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy. The crystal structure is the trigonal 1T-polytype with space group P321 and is based on electroneutral [Be{\O}2(BΔO3)]-layers formed by BeO3{\O}-tetrahedra and BΔO3-triangles. Due to statistical occupancy of the {\O}-ligand by hydroxyl groups (50%) and water molecules (50%), berborite-1T and its related polytypes are characterized by complex systems of hydrogen bonds. Accurate analysis shows that in the structure of berborite there are two independent systems of hydrogen bonds involving mobile protons. Lowering of temperature results in the complete stabilization of protons at the critical “freezing-point” of 243 K. The crystal chemistry and complexity of layered beryllium borates are discussed. Despite the broad structural diversity of these compounds, their crystal structures are classified as simple (20–100 bits per unit cell) or intermediately complex (100–500 bits per unit cell). The complexity of berborite polytypes increases in accordance with the quantity of layers from 29.038 (1T) to 78.077 (2H), which is in good agreement with the negative contribution of complexity to the configurational entropy. {\textcopyright} 2024 Elsevier Ltd",
keywords = "Berborite, Beryllium borates, Hydrogen bond, Optical materials, Proton conductivity, Structural complexity, Complexation, Crystal atomic structure, Molecules, Nuclear magnetic resonance spectroscopy, Single crystals, Temperature, X ray diffraction analysis, Crystal-chemistry, Crystals structures, Hydrogen atoms, Local state, Lows-temperatures, Per unit, Polytypes, Unit cells, Hydrogen bonds",
author = "S.M. Aksenov and N.V. Chukanov and V.P. Tarasov and D.A. Banaru and S.A. Mackley and A.M. Banaru and S.V. Krivovichev and P.C. Burns",
note = "Export Date: 11 March 2024 CODEN: JPCSA Адрес для корреспонденции: Aksenov, S.M.; Laboratory of Arctic Mineralogy and Material Sciences, 14 Fersman str., Russian Federation; эл. почта: aks.crys@gmail.com Сведения о финансировании: 122011300125–2, 22-17-00006 Сведения о финансировании: U.S. Department of Energy, USDOE, DE-FG02– 07ER15880 Сведения о финансировании: Office of Science, SC Сведения о финансировании: Basic Energy Sciences, BES Сведения о финансировании: Chemical Sciences, Geosciences, and Biosciences Division, CSGB Сведения о финансировании: Russian Foundation for Basic Research, РФФИ, 18-29-12005_mk Сведения о финансировании: Russian Science Foundation, RSF, 20-77-10065 Текст о финансировании 1: Authors thank Dr. Alexander P. Dudka for the help in data collection. SMA thanks Russian Foundation for Basic Research (grant No. 18-29-12005_mk , X-ray analysis), Russian Science Foundation (grant No. 20-77-10065 , crystal chemical analysis of modular and polytypic relations) and the theme of state assignment of KSC RAS (No. 122011300125–2 ). A part of the work (IR spectroscopy) was performed in accordance with the state task, state registration number AAA-A19-119092390076-7. Mineralogical, chemical and NMR studies were supported by the Russian Science Foundation (grant No. 22-17-00006 ). PCB's involvement in this work was funded by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy , Grant No. DE-FG02– 07ER15880 . Пристатейные ссылки: Belokoneva, E.L., Borate crystal chemistry in terms of the extended OD theory: topology and symmetry analysis (2005) Crystallogr. Rev., 11, pp. 151-198; Topnikova, A.P., Belokoneva, E.L., The structure and classification of complex borates (2019) Russ. Chem. Rev., 88, pp. 204-228; Hawthorne, F.C., Burns, P.C., Grice, J.D., The crystal chemistry of boron (1996) Rev. Mineral. Geochem., 33, pp. 41-116; Christ, C.L., Clark, J.R., A crystal-chemical classification of borate structures with emphasis on hydrated borates (1977) Phys. Chem. Miner., 2, pp. 59-87; Becker, P., Borate materials in nonlinear optics (1998) Adv. Mater., 10, pp. 979-992; Chen, C., Wu, Y., Li, R., The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series (1989) Int. Rev. Phys. Chem., 8, pp. 65-91; Chen, C., Lin, Z., Wang, Z., The development of new borate-based UV nonlinear optical crystals (2005) Appl. Phys. B Laser Opt., 80, pp. 1-25; Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., Kamimura, T., Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light (2000) Mater. Sci. Eng. R Rep., 30, pp. 1-54; Bubnova, R., Volkov, S., Albert, B., Filatov, S., Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations (2017) Crystals, 7, p. 93; Hawthorne, F.C., Huminicki, D.M.C., The crystal chemistry of beryllium (2002) Rev. Mineral. Geochem., 50, pp. 333-403; Dehnicke, K., Neum{\"u}ller, B., Neues aus der chemie des berylliums (2008) Zeitschrift Fur Anorg. Und Allg. Chemie., 634, pp. 2703-2728; Tran, T.T., Yu, H., Rondinelli, J.M., Poeppelmeier, K.R., Halasyamani, P.S., Deep ultraviolet nonlinear optical materials (2016) Chem. Mater., 28, pp. 5238-5258; Yang, Y., Jiang, X., Lin, Z., Wu, Y., Borate-based ultraviolet and deep-ultraviolet nonlinear optical crystals (2017) Crystals, 7, pp. 1-16; Chen, C., Liu, L., Wang, X., Fluorine-containing beryllium borates as nonlinear optical crystals for deep-ultraviolet laser generation (2016) Photonic Electron. Prop. Fluoride Mater. Prog. Fluor. Sci. Ser., pp. 113-137. , Elsevier Inc; Wu, H., Yu, H., Yang, Z., Hou, X., Su, X., Pan, S., Poeppelmeier, K.R., Rondinelli, J.M., Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response (2013) J. Am. Chem. Soc., 135, pp. 4215-4218; Wu, B., Tang, D., Ye, N., Chen, C., Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal (1996) Opt. Mater., 5, pp. 105-109; Chen, C., Xu, Z., Deng, D., Zhang, J., Wong, G.K.L., Wu, B., Ye, N., Tang, D., The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal (1996) Appl. Phys. Lett., 68, pp. 2930-2932; Mei, L., Huang, X., Wang, Y., Wu, Q., Wu, B., Chen, C., Crystal structure of KBe2BO3F2 (1995) Z. f{\"u}r Kristallogr. - Cryst. Mater., 210, pp. 93-95; Ouyang, T., Shen, Y., Zhao, S., Accurate design and synthesis of nonlinear optical crystals employing KBe2BO3F2 as structural template (2023) Chin. J. Struct. Chem., 42; Huang, Q., Liu, L., Wang, X., Li, R., Chen, C., Beryllium-free KBBF family of nonlinear-optical crystals: AZn2BO3X2 (A = Na, K, Rb; X = Cl (2016) Br), Inorg. Chem., 55, pp. 12496-12499; Zhou, J., Liu, Y., Wu, H., Yu, H., Lin, Z., Hu, Z., Wang, J., Wu, Y., CsZn2BO3X2 (X2 =F2, Cl2, and FCl): a series of beryllium-free deep-ultraviolet nonlinear-optical crystals with excellent properties (2020) Angew. Chem. Int. Ed., 59, pp. 19006-19010; Wang, Q., Song, W., Lan, Y., Cao, L., Huang, L., Gao, D., Bi, J., Zou, G., KLi2CO3F: a beryllium-free KBBF-type deep-UV carbonate with an enhanced interlayer interaction and large birefringence (2022) Inorg. Chem. Front., 9, pp. 3590-3597; Nefedov, E.I., Berborite, a new mineral (1967) Dokl. Akad. Nauk SSSR, 174, pp. 189-192; Giuseppetti, G., Mazzi, F., Tadini, C., Larsen, A.O., Asheim, A., Raade, G., Berborite polytypes (1990) Neues Jahrb. Fuer Mineral. Abhandlungen., 162, pp. 101-116; Kang, L., Gong, P., Lin, Z., Huang, B., Deep-ultraviolet nonlinear-optical van-der-Waals beryllium borates (2021) Angew. Chem. Int. Ed., 60, pp. 16680-16686; Kang, L., Lin, Z., Deep-ultraviolet nonlinear optical crystals: concept development and materials discovery (2022) Light Sci. Appl., 11, p. 201; (2009) Oxford Diffraction, CrysAlisPro, , Oxford Diffraction Ltd Abingdon, Oxfordshire, UK; Palatinus, L., Chapuis, G., Superflip - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions (2007) J. Appl. Crystallogr., 40, pp. 786-790; Petricek, V., Dusek, M., Palatinus, L., Crystallographic computing system JANA2006: general features (2014) Zeitschrift Fur Krist, 229, pp. 345-352; Prince, E., (2004) International Tables for Crystallography, , Volume C, third ed. Mathematical, Physical and Chemical Tables; Brandenburg, K., Putz, H., DIAMOND, Version 3 (2005), Crystal Impact GbR Bonn, Germany; Willis, B.T.M., Pryor, A.W., Thermal Vibrations in Crystallography (1975), Cambridge University Press London; Brown, I.D., Altermatt, D., Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database (1985) Acta Crystallogr. B, 41, pp. 244-247; Brown, I.D., The Chemical Bond in Inorganic Chemistry: the Bond Valence Model (2006), Oxford University Press; Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach (2012) Acta Crystallogr. Sect. A Found. Crystallogr., 68, pp. 393-398; Krivovichev, S.V., Which inorganic structures are the most complex? (2014) Angew. Chem. Int. Ed., 53, pp. 654-661; Blatov, V.A., Shevchenko, A.P., Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro (2014) Cryst. Growth Des., 14, pp. 3576-3586; V Krivovichev, S., Ladders of information, What contributes to the structural complexity of inorganic crystals (2018) Z. Kristallogr., 233, pp. 155-161; V Gurzhiy, V., Pl{\'a}{\v s}il, J., Structural complexity of natural uranyl sulfates (2019) Acta Crystallogr. B, 75, pp. 39-48; Hornfeck, W., On an extension of Krivovichev {\textquoteright} s complexity measures (2020) Acta Crystallogr. A., 76, pp. 534-548; Hornfeck, W., Crystallographic complexity partition analysis (2022) Z. Kristallogr.; Sabirov, D.S., Information entropy changes in chemical reactions (2018) Comput. Theor. Chem., 1123, pp. 169-179; Sabirov, D.S., Information entropy of mixing molecules and its application to molecular ensembles and chemical reactions (2020) Comput. Theor. Chem., 1187; Sabirov, D., Tukhbatullina, A.A., Shepelevich, I.S., Molecular size and molecular structure: discriminating their changes upon chemical reactions in terms of information entropy (2022) J. Mol. Graph. Model., 110; Bubnova, R.S., Filatov, S.K., High-Temperature borate crystal chemistry (2013) Zeitschrift Fur Krist, 288, pp. 395-428; Filatov, S.K., Biryukov, Y.P., Bubnova, R.S., Shablinskii, A.P., The novel borate Lu5Ba6B9O27 with a new structure type: synthesis, disordered crystal structure and negative linear thermal expansion (2019) Acta Crystallogr. B, 75, pp. 697-703; Yao, W., Jiang, X., Huang, R., Li, W., Huang, C., Lin, Z., Li, L., Chen, C., Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra (2014) Chem. Commun., 50, pp. 13499-13501; Burns, P.C., Hawthorne, F.C., Structure and hydrogen bonding in preobrazhenskite, a complex heteropolyhedral borate (1994) Can. Mineral., 32, pp. 387-396; Burns, P.C., Hawthorne, F.C., Kaliborite: an example of a crystallographically symmetrical hydrogen bond (1994) Can. Mineral., 32, pp. 885-894; Aksenov, S.M., Chukanov, N.V., G{\"o}ttlicher, J., M{\"o}ckel, S., Varlamov, D., Van, K.V., Rastsvetaeva, R.K., New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite (2018) Phys. Chem. Miner., 45, pp. 39-50; Yamnova, N.A., Aksenov, S.M., Borovikova, E.Y., Volkov, A.S., Gurbanova, O.A., Dimitrova, O.V., Burns, P.C., A novel sodium and chromium borophosphate Na{Cr[BP2O7(OH)3]}: synthesis, crystal structure, hydrogen bonding, and comparative crystal chemistry (2019) Crystallogr. Rep., 64, pp. 228-238; Arnold, D.W., Xu, C., Neumark, D.M., Spectroscopy of the transition state: elementary reactions of the hydroxyl radical studied by photoelectron spectroscopy of O−(H2O) and H3O2− (1995) J. Chem. Phys., 102, pp. 6088-6099; Huang, X., Braams, B.J., Carter, S., Bowman, J.M., Quantum calculations of vibrational energies of H3O2- on an ab initio potential (2004) J. Am. Chem. Soc., 126, pp. 5042-5043; Kaledin, M., Moffitt, J.M., Clark, C.R., Rizvi, F., Ab initio molecular dynamics simulations of the infrared spectra of H3O2− and D3O2− (2009) J. Chem. Theor. Comput., 5, pp. 1328-1336; Libowitzky, E., Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals (1999) Monatsh. Chem., 130, pp. 1047-1059; Jacobs, H., Niemann, A., Kockelmann, W., Low temperature investigations of hydrogen bridge bonds in the hydroxides β-Be(OH)2 and ε-Zn(OH)2 by Raman-spectroscopy as well as X-ray and neutron diffraction (2005) Zeitschrift Fur Anorg. Und Allg. Chemie., 631, pp. 1247-1254; Chukanov, N.V., Chervonnyi, A.D., Infrared Spectroscopy of Minerals and Related Compounds (2016), Springer International Publishing; Belokoneva, E.L., Topnikova, A.P., Aksenov, S.M., Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: structure prediction (2015) Crystallogr. Rep., 60, pp. 1-15; Ferraris, G., Makovicky, E., Merlino, S., Crystallography of Modular Materials (2008), Oxford University Press; Aksenov, S.M., Charkin, D.O., Banaru, A.M., Banaru, D.A., Volkov, S.N., Deineko, D.V., Kuznetsov, A.N., Yamnova, N.A., Modularity, polytypism, topology, and complexity of crystal structures of inorganic compounds (Review) (2023) J. Struct. Chem., 64, pp. 1797-2028; Guo, S., Jiang, X., Liu, L., Xia, M., Fang, Z., Wang, X., Lin, Z., Chen, C., BaBe2BO3F3: a KBBF-type deep-ultraviolet nonlinear optical material with reinforced [Be2BO3F2]∞ layers and short phase-matching wavelength (2016) Chem. Mater., 28, pp. 8871-8875; Solov'eva, L.P., Bakakin, V.V., Crystal structure of potassium boratofluoroberyllate, KBe2(BO3)F2 (1970) Kristallografiya, 15, pp. 922-925; Baidina, I.A., Bakakin, V.V., Batsanova, L.R., Palchik, N.A., Podberezskaya, N.V., Solov'eva, L.P., The X-ray diffraction study of boratofluoroberyllates of the composition MBe2(BO3)F2, where M is sodium, potassium, rubidium, or cesium (1975) Zh. Strukt. Khim., 16, pp. 1050-1053; Spek, A.L., Single-crystal structure validation with the program PLATON (2003) J. Appl. Crystallogr., 36, pp. 7-13; Mei, L., Huang, X., Wang, Y., Wu, Q., Wu, B., Chen, C., Crystal structure of KBe2BO3F2 (1995) Zeitschrift Fuer Krist, 210, pp. 93-95; McMillen, C.D., Hu, J., Vanderveer, D., Kolis, J.W., Trigonal structures of ABe2BO3F2 (A = Rb, Cs, Tl) crystals (2009) Acta Crystallogr. B, 65, pp. 445-449; Mei, L., Wang, Y., Chen, C., Crystal structure of sodium beryllium borate fluoride (1994) Mater. Res. Bull., 29, pp. 81-87; Chernyatieva, A.P., Aksenov, S.M., Krivovichev, S.V., Yamnova, N.A., Burns, P.C., Synthesis and crystal structure of Rb1.5(NH4)0.5{Cu(P2O7)}: comparative crystal chemistry and topology‒symmetry analysis in terms of extended OD theory (2019) Crystallogr. Rep., 64, pp. 239-246; Guo, S., Jiang, X., Xia, M., Liu, L., Fang, Z., Huang, Q., Wu, R., Chen, C., Structural design of two fluorine-beryllium borates BaMBe2(BO3)2F2 (M = Mg, Ca) containing flexible two-dimensional [Be3B3O6F3]∞ single layers without structural instability problems (2017) Inorg. Chem., 56, pp. 11451-11454; Callegari, A., Caucia, F., Mazzi, F., Oberti, R., Ottolini, L., Ungaretti, L., The crystal structure of peprossiite-(Ce), an anhydrous REE and Al mica-like borate with square-pyramidal coordination for Al (2000) Am. Mineral., 85, pp. 586-593; Luce, J.L., Schaffers, K.I., Keszler, D.A., Structure of the borate Li14Be5B(BO3)9 (1994) Inorg. Chem., 33, pp. 2453-2455; Wang, X., Liu, L., Xia, M., Wang, X., Chen, C., Two isostructural multi-metal borates: syntheses, crystal structures and characterizations of M3LiNa4Be4B10O24F (M = Sr, Cd) (2015) Chin. J. Struct. Chem., 34, pp. 1617-1625; Luo, S., Yao, W., Gong, P., Yao, J., Lin, Z., Chen, C., Ca3Na4LiBe4B10O24F: a new beryllium borate with a unique beryl borate ∞2[Be8B16O40F2] layer intrabridged by [B12O24] groups (2014) Inorg. Chem., 53, pp. 8197-8199; Burns, P.C., Grice, J.D., Hawthorne, F.C., Borate minerals. I. Polyhedral clusters and foundamental building block (1995) Can. Mineral., 33, pp. 1131-1151; Fang, Z., Liang, F., Xia, M., Liu, L., Huang, Q., Guo, S., Wang, X., Chen, C., Two KBBF-type beryllium borates MBe2B2O6 (M = Sr, Ba) with a three-dimensional (Be2B2O6)∞ network (2017) Inorg. Chem., 56, pp. 12090-12093; Schaffers, K.I., Keszler, D.A., The layered borate SrBe2(BO3)2 (1990) J. Solid State Chem., 85, pp. 270-274; Li, W., Ye, N., Na2[BeB2O5] (2007) Acta Crystallogr. E., 63, p. i160; Schaffers, K.I., Keszler, D.A., Alkaline-earth beryllium borate CaBeB2O5 (1993) Acta Crystallogr. C, 49, pp. 647-650; Yao, W., Wang, X., Huang, H., Xu, T., Jiang, X., Wang, X., Lin, Z., Chen, C., SrBeB2O5: growth, crystal structure and optical properties (2014) J. Alloys Compd., 593, pp. 256-260; Li, H., Ju, J., Lin, J.H., Synthesis and crystal structure of layered beryllium polyborate H2BeB4O8 (2002) Chin. J. Inorg. Chem., 18, pp. 764-768; Yan, X., Luo, S., Lin, Z., Yao, J., He, R., Yue, Y., Chen, C., ReBe2B5O11 (Re = Y, Gd): rare-earth beryllium borates as deep- ultraviolet nonlinear-optical materials (2014) Inorg. Chem., 53, pp. 1952-1954; Burns, P.C., Hawthorne, F.C., Hydrogen bonding in tunellite (1994) Can. Mineral., 32, pp. 895-902; {\v D}urovi{\v c}, S., Hybler, J., OD structures in crystallography — basic concepts and suggestions for practice (2006) Z. Kristallogr., 221, pp. 63-76; Yamnova, N.A., Banaru, D.A., Banaru, A.M., Aksenov, S.M., Comparative crystal chemistry, symmetry features, and structural complexity of LiOH, NaOH, RbOH, CsOH, and TlOH hydroxides (2022) J. Struct. Chem., 63, pp. 2054-2067; Siidra, O.I., Zenko, D.S., V Krivovichev, S., Structural complexity of lead silicates: crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjoite (2014) Am. Mineral., 99, pp. 817-823; Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Aksenov, S.M., Avdontceva, M.S., Banaru, A.M., Gorelova, L.A., Starova, G.L., Structural and chemical complexity of minerals: an update (2022) Mineral. Mag., 86, pp. 183-204; Banaru, A.M., Aksenov, S.M., Krivovichev, S.V., Complexity parameters for molecular solids (2021) Symmetry, 13, p. 1399; Krivovichev, S.V., Structural complexity and configurational entropy of crystals (2016) Acta Crystallogr. B, 72, pp. 274-276; Schlatti, M., Hydrothermalsynthese und Strukturtyp des Berylliumborates Be2BO3OH(H2O) (1968) Tschermaks Mineral. Petrogr. Mittl., 12, p. 463 469; Huang, H., Chen, C., Wang, X., Zhu, Y., Wang, G., Zhang, X., Wang, L., Yao, J., Ultraviolet nonlinear optical crystal: CsBe2BO3F2 (2011) J. Opt. Soc. Am. B, 28, p. 2186; Ye, N., Tang, D., Hydrothermal growth of KBe2BO3F2 crystals (2006) J. Cryst. Growth, 293, pp. 233-235; Sang, Y., Yu, D., Avdeev, M., Piltz, R., Sharma, N., Ye, N., Liu, H., Wang, J., X-ray and neutron diffraction studies of flux and hydrothermally grown nonlinear optical material KBe2BO3F2 (2012) CrystEngComm, 14, pp. 6079-6084; Yu, J., Liu, L., Jin, S., Zhou, H., He, X., Zhang, C., Zhou, W., Chen, C., Superstructure and stacking faults in hydrothermal-grown KBe2BO3F2 crystals (2011) J. Solid State Chem., 184, pp. 2790-2793; Xu, T., Liu, L., Wang, X., Zhou, H., He, X., Zhang, C., Chen, C., Superstructure studies in hydrothermal-grown RbBe2BO3F2 crystals (2015) J. Alloys Compd., 625, pp. 118-121; Huang, H., Yao, J., Lin, Z., Wang, X., He, R., Yao, W., Zhai, N., Chen, C., Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: new structures in MM'Be2B2O6F (M = Na, M′ = Ca; M = K, M′: Ca, Sr) (2011) Chem. Mater., 23, pp. 5457-5463; Chen, C.-T., Wang, Y.-B., Wu, B.-C., Wu, K.-C., Zeng, W.-I., Yu, L.-H., Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7 (1995) Nature, 373, pp. 322-324; Yao, W., Huang, H., Yao, J., Xu, T., Jiang, X., Lin, Z., Chen, C., Sr3BeB6O13: a new borate in the SrO/BeO/B2O3 system with novel Tri-six-membered ring (BeB6O15)10-building block (2013) Inorg. Chem., 52, pp. 6136-6141; Cliffe, M.J., Goodwin, A.L., PASCal: a principal axis strain calculator for thermal expansion and compressibility determination (2012) J. Appl. Crystallogr., 45, pp. 1321-1329; Baidina, I.A., Bakakin, V.V., Podberezskaya, N.V., Alekseev, V.I., Batsanova, L.R., Pavlyuchenko, V.S., Crystal structure of beryllium fluoride borate Be2(BO3)F (1978) J. Struct. Chem., 19, pp. 105-108",
year = "2024",
month = jun,
day = "1",
doi = "10.1016/j.jpcs.2024.111944",
language = "Английский",
volume = "189",
journal = "Journal of Physics and Chemistry of Solids",
issn = "0022-3697",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - The local state of hydrogen atoms and proton transfer in the crystal structure of natural berborite, Be2(BO3)(OH)‧H2O: Low-temperature single crystal X-ray analysis, IR and 1H NMR spectroscopy, and crystal chemistry and structural complexity of beryllium borates

AU - Aksenov, S.M.

AU - Chukanov, N.V.

AU - Tarasov, V.P.

AU - Banaru, D.A.

AU - Mackley, S.A.

AU - Banaru, A.M.

AU - Krivovichev, S.V.

AU - Burns, P.C.

N1 - Export Date: 11 March 2024 CODEN: JPCSA Адрес для корреспонденции: Aksenov, S.M.; Laboratory of Arctic Mineralogy and Material Sciences, 14 Fersman str., Russian Federation; эл. почта: aks.crys@gmail.com Сведения о финансировании: 122011300125–2, 22-17-00006 Сведения о финансировании: U.S. Department of Energy, USDOE, DE-FG02– 07ER15880 Сведения о финансировании: Office of Science, SC Сведения о финансировании: Basic Energy Sciences, BES Сведения о финансировании: Chemical Sciences, Geosciences, and Biosciences Division, CSGB Сведения о финансировании: Russian Foundation for Basic Research, РФФИ, 18-29-12005_mk Сведения о финансировании: Russian Science Foundation, RSF, 20-77-10065 Текст о финансировании 1: Authors thank Dr. Alexander P. Dudka for the help in data collection. SMA thanks Russian Foundation for Basic Research (grant No. 18-29-12005_mk , X-ray analysis), Russian Science Foundation (grant No. 20-77-10065 , crystal chemical analysis of modular and polytypic relations) and the theme of state assignment of KSC RAS (No. 122011300125–2 ). A part of the work (IR spectroscopy) was performed in accordance with the state task, state registration number AAA-A19-119092390076-7. Mineralogical, chemical and NMR studies were supported by the Russian Science Foundation (grant No. 22-17-00006 ). PCB's involvement in this work was funded by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy , Grant No. DE-FG02– 07ER15880 . Пристатейные ссылки: Belokoneva, E.L., Borate crystal chemistry in terms of the extended OD theory: topology and symmetry analysis (2005) Crystallogr. Rev., 11, pp. 151-198; Topnikova, A.P., Belokoneva, E.L., The structure and classification of complex borates (2019) Russ. Chem. Rev., 88, pp. 204-228; Hawthorne, F.C., Burns, P.C., Grice, J.D., The crystal chemistry of boron (1996) Rev. Mineral. Geochem., 33, pp. 41-116; Christ, C.L., Clark, J.R., A crystal-chemical classification of borate structures with emphasis on hydrated borates (1977) Phys. Chem. Miner., 2, pp. 59-87; Becker, P., Borate materials in nonlinear optics (1998) Adv. Mater., 10, pp. 979-992; Chen, C., Wu, Y., Li, R., The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series (1989) Int. Rev. Phys. Chem., 8, pp. 65-91; Chen, C., Lin, Z., Wang, Z., The development of new borate-based UV nonlinear optical crystals (2005) Appl. Phys. B Laser Opt., 80, pp. 1-25; Sasaki, T., Mori, Y., Yoshimura, M., Yap, Y.K., Kamimura, T., Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light (2000) Mater. Sci. Eng. R Rep., 30, pp. 1-54; Bubnova, R., Volkov, S., Albert, B., Filatov, S., Borates—crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations (2017) Crystals, 7, p. 93; Hawthorne, F.C., Huminicki, D.M.C., The crystal chemistry of beryllium (2002) Rev. Mineral. Geochem., 50, pp. 333-403; Dehnicke, K., Neumüller, B., Neues aus der chemie des berylliums (2008) Zeitschrift Fur Anorg. Und Allg. Chemie., 634, pp. 2703-2728; Tran, T.T., Yu, H., Rondinelli, J.M., Poeppelmeier, K.R., Halasyamani, P.S., Deep ultraviolet nonlinear optical materials (2016) Chem. Mater., 28, pp. 5238-5258; Yang, Y., Jiang, X., Lin, Z., Wu, Y., Borate-based ultraviolet and deep-ultraviolet nonlinear optical crystals (2017) Crystals, 7, pp. 1-16; Chen, C., Liu, L., Wang, X., Fluorine-containing beryllium borates as nonlinear optical crystals for deep-ultraviolet laser generation (2016) Photonic Electron. Prop. Fluoride Mater. Prog. Fluor. Sci. Ser., pp. 113-137. , Elsevier Inc; Wu, H., Yu, H., Yang, Z., Hou, X., Su, X., Pan, S., Poeppelmeier, K.R., Rondinelli, J.M., Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response (2013) J. Am. Chem. Soc., 135, pp. 4215-4218; Wu, B., Tang, D., Ye, N., Chen, C., Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal (1996) Opt. Mater., 5, pp. 105-109; Chen, C., Xu, Z., Deng, D., Zhang, J., Wong, G.K.L., Wu, B., Ye, N., Tang, D., The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal (1996) Appl. Phys. Lett., 68, pp. 2930-2932; Mei, L., Huang, X., Wang, Y., Wu, Q., Wu, B., Chen, C., Crystal structure of KBe2BO3F2 (1995) Z. für Kristallogr. - Cryst. Mater., 210, pp. 93-95; Ouyang, T., Shen, Y., Zhao, S., Accurate design and synthesis of nonlinear optical crystals employing KBe2BO3F2 as structural template (2023) Chin. J. Struct. Chem., 42; Huang, Q., Liu, L., Wang, X., Li, R., Chen, C., Beryllium-free KBBF family of nonlinear-optical crystals: AZn2BO3X2 (A = Na, K, Rb; X = Cl (2016) Br), Inorg. Chem., 55, pp. 12496-12499; Zhou, J., Liu, Y., Wu, H., Yu, H., Lin, Z., Hu, Z., Wang, J., Wu, Y., CsZn2BO3X2 (X2 =F2, Cl2, and FCl): a series of beryllium-free deep-ultraviolet nonlinear-optical crystals with excellent properties (2020) Angew. Chem. Int. Ed., 59, pp. 19006-19010; Wang, Q., Song, W., Lan, Y., Cao, L., Huang, L., Gao, D., Bi, J., Zou, G., KLi2CO3F: a beryllium-free KBBF-type deep-UV carbonate with an enhanced interlayer interaction and large birefringence (2022) Inorg. Chem. Front., 9, pp. 3590-3597; Nefedov, E.I., Berborite, a new mineral (1967) Dokl. Akad. Nauk SSSR, 174, pp. 189-192; Giuseppetti, G., Mazzi, F., Tadini, C., Larsen, A.O., Asheim, A., Raade, G., Berborite polytypes (1990) Neues Jahrb. Fuer Mineral. Abhandlungen., 162, pp. 101-116; Kang, L., Gong, P., Lin, Z., Huang, B., Deep-ultraviolet nonlinear-optical van-der-Waals beryllium borates (2021) Angew. Chem. Int. Ed., 60, pp. 16680-16686; Kang, L., Lin, Z., Deep-ultraviolet nonlinear optical crystals: concept development and materials discovery (2022) Light Sci. Appl., 11, p. 201; (2009) Oxford Diffraction, CrysAlisPro, , Oxford Diffraction Ltd Abingdon, Oxfordshire, UK; Palatinus, L., Chapuis, G., Superflip - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions (2007) J. Appl. Crystallogr., 40, pp. 786-790; Petricek, V., Dusek, M., Palatinus, L., Crystallographic computing system JANA2006: general features (2014) Zeitschrift Fur Krist, 229, pp. 345-352; Prince, E., (2004) International Tables for Crystallography, , Volume C, third ed. Mathematical, Physical and Chemical Tables; Brandenburg, K., Putz, H., DIAMOND, Version 3 (2005), Crystal Impact GbR Bonn, Germany; Willis, B.T.M., Pryor, A.W., Thermal Vibrations in Crystallography (1975), Cambridge University Press London; Brown, I.D., Altermatt, D., Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database (1985) Acta Crystallogr. B, 41, pp. 244-247; Brown, I.D., The Chemical Bond in Inorganic Chemistry: the Bond Valence Model (2006), Oxford University Press; Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach (2012) Acta Crystallogr. Sect. A Found. Crystallogr., 68, pp. 393-398; Krivovichev, S.V., Which inorganic structures are the most complex? (2014) Angew. Chem. Int. Ed., 53, pp. 654-661; Blatov, V.A., Shevchenko, A.P., Proserpio, D.M., Applied topological analysis of crystal structures with the program package ToposPro (2014) Cryst. Growth Des., 14, pp. 3576-3586; V Krivovichev, S., Ladders of information, What contributes to the structural complexity of inorganic crystals (2018) Z. Kristallogr., 233, pp. 155-161; V Gurzhiy, V., Plášil, J., Structural complexity of natural uranyl sulfates (2019) Acta Crystallogr. B, 75, pp. 39-48; Hornfeck, W., On an extension of Krivovichev ’ s complexity measures (2020) Acta Crystallogr. A., 76, pp. 534-548; Hornfeck, W., Crystallographic complexity partition analysis (2022) Z. Kristallogr.; Sabirov, D.S., Information entropy changes in chemical reactions (2018) Comput. Theor. Chem., 1123, pp. 169-179; Sabirov, D.S., Information entropy of mixing molecules and its application to molecular ensembles and chemical reactions (2020) Comput. Theor. Chem., 1187; Sabirov, D., Tukhbatullina, A.A., Shepelevich, I.S., Molecular size and molecular structure: discriminating their changes upon chemical reactions in terms of information entropy (2022) J. Mol. Graph. Model., 110; Bubnova, R.S., Filatov, S.K., High-Temperature borate crystal chemistry (2013) Zeitschrift Fur Krist, 288, pp. 395-428; Filatov, S.K., Biryukov, Y.P., Bubnova, R.S., Shablinskii, A.P., The novel borate Lu5Ba6B9O27 with a new structure type: synthesis, disordered crystal structure and negative linear thermal expansion (2019) Acta Crystallogr. B, 75, pp. 697-703; Yao, W., Jiang, X., Huang, R., Li, W., Huang, C., Lin, Z., Li, L., Chen, C., Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra (2014) Chem. Commun., 50, pp. 13499-13501; Burns, P.C., Hawthorne, F.C., Structure and hydrogen bonding in preobrazhenskite, a complex heteropolyhedral borate (1994) Can. Mineral., 32, pp. 387-396; Burns, P.C., Hawthorne, F.C., Kaliborite: an example of a crystallographically symmetrical hydrogen bond (1994) Can. Mineral., 32, pp. 885-894; Aksenov, S.M., Chukanov, N.V., Göttlicher, J., Möckel, S., Varlamov, D., Van, K.V., Rastsvetaeva, R.K., New insights into the crystal chemistry of agardite-(Ce): refinement of the crystal structure, hydrogen bonding, and epitaxial intergrowths with the Sb-analogue of auriacusite (2018) Phys. Chem. Miner., 45, pp. 39-50; Yamnova, N.A., Aksenov, S.M., Borovikova, E.Y., Volkov, A.S., Gurbanova, O.A., Dimitrova, O.V., Burns, P.C., A novel sodium and chromium borophosphate Na{Cr[BP2O7(OH)3]}: synthesis, crystal structure, hydrogen bonding, and comparative crystal chemistry (2019) Crystallogr. Rep., 64, pp. 228-238; Arnold, D.W., Xu, C., Neumark, D.M., Spectroscopy of the transition state: elementary reactions of the hydroxyl radical studied by photoelectron spectroscopy of O−(H2O) and H3O2− (1995) J. Chem. Phys., 102, pp. 6088-6099; Huang, X., Braams, B.J., Carter, S., Bowman, J.M., Quantum calculations of vibrational energies of H3O2- on an ab initio potential (2004) J. Am. Chem. Soc., 126, pp. 5042-5043; Kaledin, M., Moffitt, J.M., Clark, C.R., Rizvi, F., Ab initio molecular dynamics simulations of the infrared spectra of H3O2− and D3O2− (2009) J. Chem. Theor. Comput., 5, pp. 1328-1336; Libowitzky, E., Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals (1999) Monatsh. Chem., 130, pp. 1047-1059; Jacobs, H., Niemann, A., Kockelmann, W., Low temperature investigations of hydrogen bridge bonds in the hydroxides β-Be(OH)2 and ε-Zn(OH)2 by Raman-spectroscopy as well as X-ray and neutron diffraction (2005) Zeitschrift Fur Anorg. Und Allg. Chemie., 631, pp. 1247-1254; Chukanov, N.V., Chervonnyi, A.D., Infrared Spectroscopy of Minerals and Related Compounds (2016), Springer International Publishing; Belokoneva, E.L., Topnikova, A.P., Aksenov, S.M., Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: structure prediction (2015) Crystallogr. Rep., 60, pp. 1-15; Ferraris, G., Makovicky, E., Merlino, S., Crystallography of Modular Materials (2008), Oxford University Press; Aksenov, S.M., Charkin, D.O., Banaru, A.M., Banaru, D.A., Volkov, S.N., Deineko, D.V., Kuznetsov, A.N., Yamnova, N.A., Modularity, polytypism, topology, and complexity of crystal structures of inorganic compounds (Review) (2023) J. Struct. Chem., 64, pp. 1797-2028; Guo, S., Jiang, X., Liu, L., Xia, M., Fang, Z., Wang, X., Lin, Z., Chen, C., BaBe2BO3F3: a KBBF-type deep-ultraviolet nonlinear optical material with reinforced [Be2BO3F2]∞ layers and short phase-matching wavelength (2016) Chem. Mater., 28, pp. 8871-8875; Solov'eva, L.P., Bakakin, V.V., Crystal structure of potassium boratofluoroberyllate, KBe2(BO3)F2 (1970) Kristallografiya, 15, pp. 922-925; Baidina, I.A., Bakakin, V.V., Batsanova, L.R., Palchik, N.A., Podberezskaya, N.V., Solov'eva, L.P., The X-ray diffraction study of boratofluoroberyllates of the composition MBe2(BO3)F2, where M is sodium, potassium, rubidium, or cesium (1975) Zh. Strukt. Khim., 16, pp. 1050-1053; Spek, A.L., Single-crystal structure validation with the program PLATON (2003) J. Appl. Crystallogr., 36, pp. 7-13; Mei, L., Huang, X., Wang, Y., Wu, Q., Wu, B., Chen, C., Crystal structure of KBe2BO3F2 (1995) Zeitschrift Fuer Krist, 210, pp. 93-95; McMillen, C.D., Hu, J., Vanderveer, D., Kolis, J.W., Trigonal structures of ABe2BO3F2 (A = Rb, Cs, Tl) crystals (2009) Acta Crystallogr. B, 65, pp. 445-449; Mei, L., Wang, Y., Chen, C., Crystal structure of sodium beryllium borate fluoride (1994) Mater. Res. Bull., 29, pp. 81-87; Chernyatieva, A.P., Aksenov, S.M., Krivovichev, S.V., Yamnova, N.A., Burns, P.C., Synthesis and crystal structure of Rb1.5(NH4)0.5{Cu(P2O7)}: comparative crystal chemistry and topology‒symmetry analysis in terms of extended OD theory (2019) Crystallogr. Rep., 64, pp. 239-246; Guo, S., Jiang, X., Xia, M., Liu, L., Fang, Z., Huang, Q., Wu, R., Chen, C., Structural design of two fluorine-beryllium borates BaMBe2(BO3)2F2 (M = Mg, Ca) containing flexible two-dimensional [Be3B3O6F3]∞ single layers without structural instability problems (2017) Inorg. Chem., 56, pp. 11451-11454; Callegari, A., Caucia, F., Mazzi, F., Oberti, R., Ottolini, L., Ungaretti, L., The crystal structure of peprossiite-(Ce), an anhydrous REE and Al mica-like borate with square-pyramidal coordination for Al (2000) Am. Mineral., 85, pp. 586-593; Luce, J.L., Schaffers, K.I., Keszler, D.A., Structure of the borate Li14Be5B(BO3)9 (1994) Inorg. Chem., 33, pp. 2453-2455; Wang, X., Liu, L., Xia, M., Wang, X., Chen, C., Two isostructural multi-metal borates: syntheses, crystal structures and characterizations of M3LiNa4Be4B10O24F (M = Sr, Cd) (2015) Chin. J. Struct. Chem., 34, pp. 1617-1625; Luo, S., Yao, W., Gong, P., Yao, J., Lin, Z., Chen, C., Ca3Na4LiBe4B10O24F: a new beryllium borate with a unique beryl borate ∞2[Be8B16O40F2] layer intrabridged by [B12O24] groups (2014) Inorg. Chem., 53, pp. 8197-8199; Burns, P.C., Grice, J.D., Hawthorne, F.C., Borate minerals. I. Polyhedral clusters and foundamental building block (1995) Can. Mineral., 33, pp. 1131-1151; Fang, Z., Liang, F., Xia, M., Liu, L., Huang, Q., Guo, S., Wang, X., Chen, C., Two KBBF-type beryllium borates MBe2B2O6 (M = Sr, Ba) with a three-dimensional (Be2B2O6)∞ network (2017) Inorg. Chem., 56, pp. 12090-12093; Schaffers, K.I., Keszler, D.A., The layered borate SrBe2(BO3)2 (1990) J. Solid State Chem., 85, pp. 270-274; Li, W., Ye, N., Na2[BeB2O5] (2007) Acta Crystallogr. E., 63, p. i160; Schaffers, K.I., Keszler, D.A., Alkaline-earth beryllium borate CaBeB2O5 (1993) Acta Crystallogr. C, 49, pp. 647-650; Yao, W., Wang, X., Huang, H., Xu, T., Jiang, X., Wang, X., Lin, Z., Chen, C., SrBeB2O5: growth, crystal structure and optical properties (2014) J. Alloys Compd., 593, pp. 256-260; Li, H., Ju, J., Lin, J.H., Synthesis and crystal structure of layered beryllium polyborate H2BeB4O8 (2002) Chin. J. Inorg. Chem., 18, pp. 764-768; Yan, X., Luo, S., Lin, Z., Yao, J., He, R., Yue, Y., Chen, C., ReBe2B5O11 (Re = Y, Gd): rare-earth beryllium borates as deep- ultraviolet nonlinear-optical materials (2014) Inorg. Chem., 53, pp. 1952-1954; Burns, P.C., Hawthorne, F.C., Hydrogen bonding in tunellite (1994) Can. Mineral., 32, pp. 895-902; Ďurovič, S., Hybler, J., OD structures in crystallography — basic concepts and suggestions for practice (2006) Z. Kristallogr., 221, pp. 63-76; Yamnova, N.A., Banaru, D.A., Banaru, A.M., Aksenov, S.M., Comparative crystal chemistry, symmetry features, and structural complexity of LiOH, NaOH, RbOH, CsOH, and TlOH hydroxides (2022) J. Struct. Chem., 63, pp. 2054-2067; Siidra, O.I., Zenko, D.S., V Krivovichev, S., Structural complexity of lead silicates: crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjoite (2014) Am. Mineral., 99, pp. 817-823; Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Aksenov, S.M., Avdontceva, M.S., Banaru, A.M., Gorelova, L.A., Starova, G.L., Structural and chemical complexity of minerals: an update (2022) Mineral. Mag., 86, pp. 183-204; Banaru, A.M., Aksenov, S.M., Krivovichev, S.V., Complexity parameters for molecular solids (2021) Symmetry, 13, p. 1399; Krivovichev, S.V., Structural complexity and configurational entropy of crystals (2016) Acta Crystallogr. B, 72, pp. 274-276; Schlatti, M., Hydrothermalsynthese und Strukturtyp des Berylliumborates Be2BO3OH(H2O) (1968) Tschermaks Mineral. Petrogr. Mittl., 12, p. 463 469; Huang, H., Chen, C., Wang, X., Zhu, Y., Wang, G., Zhang, X., Wang, L., Yao, J., Ultraviolet nonlinear optical crystal: CsBe2BO3F2 (2011) J. Opt. Soc. Am. B, 28, p. 2186; Ye, N., Tang, D., Hydrothermal growth of KBe2BO3F2 crystals (2006) J. Cryst. Growth, 293, pp. 233-235; Sang, Y., Yu, D., Avdeev, M., Piltz, R., Sharma, N., Ye, N., Liu, H., Wang, J., X-ray and neutron diffraction studies of flux and hydrothermally grown nonlinear optical material KBe2BO3F2 (2012) CrystEngComm, 14, pp. 6079-6084; Yu, J., Liu, L., Jin, S., Zhou, H., He, X., Zhang, C., Zhou, W., Chen, C., Superstructure and stacking faults in hydrothermal-grown KBe2BO3F2 crystals (2011) J. Solid State Chem., 184, pp. 2790-2793; Xu, T., Liu, L., Wang, X., Zhou, H., He, X., Zhang, C., Chen, C., Superstructure studies in hydrothermal-grown RbBe2BO3F2 crystals (2015) J. Alloys Compd., 625, pp. 118-121; Huang, H., Yao, J., Lin, Z., Wang, X., He, R., Yao, W., Zhai, N., Chen, C., Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: new structures in MM'Be2B2O6F (M = Na, M′ = Ca; M = K, M′: Ca, Sr) (2011) Chem. Mater., 23, pp. 5457-5463; Chen, C.-T., Wang, Y.-B., Wu, B.-C., Wu, K.-C., Zeng, W.-I., Yu, L.-H., Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7 (1995) Nature, 373, pp. 322-324; Yao, W., Huang, H., Yao, J., Xu, T., Jiang, X., Lin, Z., Chen, C., Sr3BeB6O13: a new borate in the SrO/BeO/B2O3 system with novel Tri-six-membered ring (BeB6O15)10-building block (2013) Inorg. Chem., 52, pp. 6136-6141; Cliffe, M.J., Goodwin, A.L., PASCal: a principal axis strain calculator for thermal expansion and compressibility determination (2012) J. Appl. Crystallogr., 45, pp. 1321-1329; Baidina, I.A., Bakakin, V.V., Podberezskaya, N.V., Alekseev, V.I., Batsanova, L.R., Pavlyuchenko, V.S., Crystal structure of beryllium fluoride borate Be2(BO3)F (1978) J. Struct. Chem., 19, pp. 105-108

PY - 2024/6/1

Y1 - 2024/6/1

N2 - Beryllium borates are mostly water-free, with the natural mineral berborite, Be2(BO3)(OH)‧H2O, being the only known exception. A sample of berborite from the Vevja quarry, Tvedalen, Larvik, Norway was studied by single-crystal X-ray diffraction, variable temperature 1H nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy. The crystal structure is the trigonal 1T-polytype with space group P321 and is based on electroneutral [BeØ2(BΔO3)]-layers formed by BeO3Ø-tetrahedra and BΔO3-triangles. Due to statistical occupancy of the Ø-ligand by hydroxyl groups (50%) and water molecules (50%), berborite-1T and its related polytypes are characterized by complex systems of hydrogen bonds. Accurate analysis shows that in the structure of berborite there are two independent systems of hydrogen bonds involving mobile protons. Lowering of temperature results in the complete stabilization of protons at the critical “freezing-point” of 243 K. The crystal chemistry and complexity of layered beryllium borates are discussed. Despite the broad structural diversity of these compounds, their crystal structures are classified as simple (20–100 bits per unit cell) or intermediately complex (100–500 bits per unit cell). The complexity of berborite polytypes increases in accordance with the quantity of layers from 29.038 (1T) to 78.077 (2H), which is in good agreement with the negative contribution of complexity to the configurational entropy. © 2024 Elsevier Ltd

AB - Beryllium borates are mostly water-free, with the natural mineral berborite, Be2(BO3)(OH)‧H2O, being the only known exception. A sample of berborite from the Vevja quarry, Tvedalen, Larvik, Norway was studied by single-crystal X-ray diffraction, variable temperature 1H nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy. The crystal structure is the trigonal 1T-polytype with space group P321 and is based on electroneutral [BeØ2(BΔO3)]-layers formed by BeO3Ø-tetrahedra and BΔO3-triangles. Due to statistical occupancy of the Ø-ligand by hydroxyl groups (50%) and water molecules (50%), berborite-1T and its related polytypes are characterized by complex systems of hydrogen bonds. Accurate analysis shows that in the structure of berborite there are two independent systems of hydrogen bonds involving mobile protons. Lowering of temperature results in the complete stabilization of protons at the critical “freezing-point” of 243 K. The crystal chemistry and complexity of layered beryllium borates are discussed. Despite the broad structural diversity of these compounds, their crystal structures are classified as simple (20–100 bits per unit cell) or intermediately complex (100–500 bits per unit cell). The complexity of berborite polytypes increases in accordance with the quantity of layers from 29.038 (1T) to 78.077 (2H), which is in good agreement with the negative contribution of complexity to the configurational entropy. © 2024 Elsevier Ltd

KW - Berborite

KW - Beryllium borates

KW - Hydrogen bond

KW - Optical materials

KW - Proton conductivity

KW - Structural complexity

KW - Complexation

KW - Crystal atomic structure

KW - Molecules

KW - Nuclear magnetic resonance spectroscopy

KW - Single crystals

KW - Temperature

KW - X ray diffraction analysis

KW - Crystal-chemistry

KW - Crystals structures

KW - Hydrogen atoms

KW - Local state

KW - Lows-temperatures

KW - Per unit

KW - Polytypes

KW - Unit cells

KW - Hydrogen bonds

UR - https://www.mendeley.com/catalogue/1d398df7-3efc-3c7d-9336-b37808c0e76e/

U2 - 10.1016/j.jpcs.2024.111944

DO - 10.1016/j.jpcs.2024.111944

M3 - статья

VL - 189

JO - Journal of Physics and Chemistry of Solids

JF - Journal of Physics and Chemistry of Solids

SN - 0022-3697

M1 - 111944

ER -

ID: 117486492